Question Paper Solution (75:25), April 2015
Subject : Software Project Management

Quesl. (a) Discuss the significance, of reducing the product size, on ROI (returns on investment).
Explain, briefly, how the product size can be reduced.
Significance (1 mark)
¢ One important aspect of software economics is that the relationship between effort and size
exhibits a diseconomy of scale.
e The more software you build, the more expensive it is per unit item.
e Fore.g. 10, 000 line software solution will cost less per line than a 100,000 line software
solution.
e Hence, the most significant way to improve ROI is usually to produce a product that
achieves the goal with the minimum possible human-generated source material.
Ways to reduce the product size (4 marks)
1. Code Reuse
2. Object oriented technology
3. Automatic code generation / ready to use components
4. HLL
(brief explanation of above points)

Ques1(b) Discuss the key practices that improve overall software quality.
Key practices to improve overall software quality are:-
Focusing on requirements and critical use cases early in the life cycle.
Using metrics and indicators to measure the progress and quality.
Providing integrated life-cycle environment.
Using visual modeling and higher level languages.
Early and continuous insight into performance issues.
(brief explanation of all above points; 1 M for each point)

Nk wbh =

Ques1(c) Boehm’s staffing principles :-
(brief explanation of each point carries 1 Mark)

Principle of Top Talent.

The principle of job matching

The principle of career progression
The principle of team balance

The principle of phase out

Nk Wb =

Ques1(d) Evolution of software economics over three generations.

Target objective: improved ROI

A

Cost

Software
ROI

Software Size

v

- 19605-1970s

- Waterfall model

- Functional design

- Diseconomy of scale

- 1980s—-1990s

- Process impovement
- Encapsulation-based
- Diseconomy of scale

- 2000 and on

- iterative development
- Component-based

- Return on investment

Coarresponding environment, size, and process technologies

Conventional

Transition

Modern Practices

Environments/tools:

Custom

Environment/tools:

Off-the-shelf, separate

Environment/tools:

Off-the-shelf, integrated

Size:

100% custom

Size:
30% component-based
70% custom

Size:
70% component-based
30% custom

Process: Process: Process:
Ad hoc Repeatable Managed/measured
Typical project performarice
Predictably bad ' Unpredictable Predictable
Always; Infrequently: Usually:
Over budget On budget On budget
Mhine enkhadila

Nn erhadila

Nn ankhAadlAa

Ques?2 (a). Discuss the Life cycle, defined for modern software development process.

Two stages of the life-cycle :
1. The engineering stage — driven by smaller teams doing design and synthesis activities
2. The production stage — driven by larger teams doing construction, test, and
deployment activities

Life-Cycle Phases :-

- Engineering Stage has following phases :-
o Inception Phase
o Elaboration Phase.

- Production Stage has following phases:-
o Construction Phase
o Transition Phase

Inception Phase - goal — to achieve concurrence among stakeholders on the life-cycle
objectives
Elaboration Phase - During the elaboration phase, an executable architecture prototype is
built
Construction Phase - All remaining components and application features are integrated into
the application. All features are thoroughly tested

Transition Phase - The transition phase is entered when baseline is mature enough to be
deployed in the end-user domain. This phase could include beta testing,
conversion of operational databases, and training of users and maintainers.

Ques2(b) Define the term “Artifacts”. List the five sets of artifacts. Define the following: - Vision
document, Software architecture description & release specifications.

Project Artifacts def. (1 Mark)

Project Artifacts are the lowest levels of project document-based objects (diagrams, design
schemes, templates, agendas) that explore project work by phases and determine what results to
produce upon completion of each phase. They define and document a planned outcome to be
delivered under preset requirements and specifications.

Artifacts create project documentation. They are generated by the team throughout the project
lifecycle. Each activity creates an artifact that documents a deliverable. All activity deliverables
are defined by project artifacts.

Listing Five Sets (

1 mark)

Requirements Set

1. Vision document
2. Requirements
model(s)

Design Set

1. Design model(s)

Implementation Set

1. Source code

Deployment Set

1. Integrated product

2. Test model baselines executable

3. Software 2. Associated baselines
architecture compiie-time 2. Associated
description files run-time files

3. Component 3. User manual

executables

2. Business case

Planning Artifacts
1. Work breakdown structure

3. Release specifications
4. Software development plan

“Management Set
Operational Artifacts

5. Release descriptions

6. Status assessments

7. Software change order database
8. Deployment documents

9. Environment

* Vision document (1 Mark) : vision statement (or user need) - which captures the contract
between the development group and the buyer.

* Software architecture description (1 mark) : Architecture Description : it is extracted from
the design model and includes views of the design, implementation, and deployment sets
sufficient to understand how the operational concept of the requirements set will be achieved.

* Release specifications (1 mark): It mainly contains Evaluation criteria. Evaluation criteria are
the snapshots of objectives for a given intermediate life- cycle milestone.

Ques. 2¢. Discuss three different aspects of software architecture from management perspective.
From a management perspective, there are three different aspects of an architecture : (3

marks)

1. An architecture (the intangible design concept) is the design of software system, as

2.

opposed to design of a component.

An architecture baseline (the tangible artifacts) is a slice of information across
the engineering artifact sets sufficient to satisfy all stakeholders that the vision
can be achieved within the parameters of the business case (cost, profit, time,
people).

An architecture description (a human-readable representation of an architecture)
is an organizes subsets of information extracted from the design set model.

The importance of software architecture can be summarized as follows: (2 marks)

e Architecture representations provide a basis for balancing the trade-offs between the
problem space and the solution space.

e Poor architectures and immature processes are often given as reasons for project failures.

e A mature process, an understanding of the primary requirements, and a demonstrable
architecture are important prerequisites for predictable planning.

e Architecture development and process definition are the intellectual steps that map the
problem to a solution without violating the constraints.

Ques 2d. Map the process exponent parameters of COCOMO to top 10 principles of modern process.

Exponent parameters of COCOMO model are :-

Application precedentedness

Process flexibility

Architecture risk resolution

Team cohesion

Software process maturity

Mapping of each COCOMO parameter to modern principles carries 1mark.

1.
2.
3.
4.
5.

Ques3a. What do you mean by workflow? Discuss briefly its types.

The term workflow is used to mean a thread of cohesive and most sequential activities.
There are seven top-level workflows:

1.

2.

Management workflow: controlling the process and ensuring win conditions for
all stakeholders.

Environment workflow: automating the process and evolving the maintenance
environment

Requirements workflow: analyzing the problem space and evolving the
requirements artifacts

Design workflow: modeling the solution and evolving the architecture and design
artifacts

Implementation workflow: programming the components and evolving the
implementation and deployment artifacts

Assessment workflow: assessing the trends in process and product quality
Deployment workflow: transitioning the end products to the user

Ques 3b. Write a short note on Major Milestone.
Major milestones : provide visibility to systemwide issues, synchronize the management and

engineering perspectives and verify that the aims of the phase have been achieved.

Inception Elaboration Construction Transition
Iteration 1 Iteration 2 f Iteration 3 lteration 4 J Iteration 5] Iteration 6 Iteration 7
Initial

Life-Cycle Life-Cycle Operational Product

Objectives Architecture Capability Release

Milestone Milestone Milestone Milestone
Major A
Mitestones Strategic focus on global concerns of the entire software project

(brief explanation of four major milestones:- Life cycle objectives, Life cycle Architecture ,
Initial Operational capability & Product Release Milestone)

Ques 3c. Define Work breakdown structure. Give difference between conventional and evolutionary

WBS. List issues related to conventional WBS.
DEF. : A WBS is simply a hierarchy of elements that decomposes the project plan into
the discrete work tasks.
A WBS provides the following information structure:
e A delineation of all significant work
e A clear task decomposition for assignment of responsibilities
e A framework for scheduling, budgeting, and expenditure tracking.

Difference between Conventional & evolutionary:- Main difference is that, An evolutionary
WBS organizes the planning elements around the PROCESS Framework.
Conventional WBS is organized using PRODUCT framework.

Conventional work breakdown structures frequently suffer from three fundamental
flaws.

1. They are prematurely structured around the product design.
2. They are prematurely decomposed, planned, and budgeted in either too
much or too little detail.

3. They are project-specific, and cross-project comparisons are usually diffi-
cult or impossible.

Ques 3d.Explain forward looking approach for cost and schedule estimating process.

Forward-looking:

1. The software project manager develops a characterization of the overall size, process,
environment, people, and quality required for the project

2. A macro-level estimate of the total effort and schedule is developed using a software
cost estimation model

3. The software project manager partitions the estimate for the effort into a top-level
WABS, also partitions the schedule into major milestone dates and partitions the effort
into a staffing profile

4. At this point, subproject managers are given the responsibility for decomposing each of
the WBS elements into lower levels using their top-level allocation, staffing profile, and
major milestone dates as constraints.

Ques 4a. Discuss briefly, default roles in a software Line-of-business organization.

Line of Business Organization: Line of Business Organizations The main features of the
default organization are as follows. Responsibility for process definition and maintenance is
specific to a cohesive line of business, where process commonality makes sense.

1. SEPA (Software Engineering Process Authority)

2. SEEA (Software Engineering Environment Authority)

3. PRA (Project Review Authority)

4. INFRASTRUCTURE

Line of Business Organization Def. — 1 mark
Each role brief explanation — 1 mark each

Ques 4b. Define Process Automation. Mention its significance. Also mention the extent of automation
at each level of process.
Process Automation : Automation means the loss of many organization jobs. Automation
needs growth depending on the scale of the effort. Process automation is critical to an iterative
process.

There are many tools available to automate the software development process.

Significance :

Process automation is necessary to perform against the development plan with acceptable
efficiency. Significant improvements of quality, shorter project durations and ultimately reduction
of overall engineering costs can be achieved through Process automation. Hence increase in
ROI.

The extent of automation at each level of process is as follows:-

1. Metaprocess: an organization’s policies, procedures, and practices for man-
aging a software-intensive line of business. The automation support for
this level is called an infrastructure. An infrastructure is an inventory of
preferred tools, artifact templates, microprocess guidelines, macroprocess
guidelines, project performance repository, database of organizational skill
sets, and library of precedent examples of past project plans and results.

2. Macroprocess: a project’s policies, procedures, and practices for producing
a complete software product within certain cost, schedule, and quality con-
straints. The automation support for a project’s process is called an envi-
ronment. An environment is a specific collection of tools to produce a
specific set of artifacts as governed by a specific project plan.

3. Microprocess: a project team’s policies, procedures, and practices for
achieving an artifact of the software process. The automation support for
generating an artifact is generally called a tool. Typical tools include
requirements management, visual modeling, compilers, editors, debuggers,
change management, metrics automation, document automation, test auto-
mation, cost estimation, and workflow automation.

Ques4c. Explain mapping between process workflows and software development tools.
There are many tools available to automate the software development process. The mapping

of the software development tools to the process workflows is shown below:

Workflows Environment tools and process automation
Management Workflow automation, metrics automation
Environment Change management, document automation

Requirements | Requirements management

Design Visual modeling

Implementation | Editor-compiler-debugger

Assessment Test automation, defect tracking

Deployment Defect tracking

Process Organization Policy

Lite Cvcle Inception | Elaboration | Construction | transition

Each of the process workflows has a distinct need for automation support.

Ques4d. “The project environment artifacts evolve through three discrete states”. Explain.

The project environment artifacts evolve through three discrete states: the prototyp-
ing environment, the development environment, and the maintenance environment.

1. The prototyping environment includes an architecture testbed for proto-
typing project architectures to evaluate trade-offs during the inception and
elaboration phases of the life cycle. This informal configuration of tools
should be capable of supporting the following activities:

e Performance trade-offs and technical risk analyses
® Make/buy trade-offs and feasibility studies for commercial products
e Fault tolerance/dynamic reconfiguration trade-offs

¢ Analysis of the risks associated with transitioning to full-scale imple-
mentation

* Development of test scenarios, tools, and instrumentation suitable for
analyzing the requirements

2. The development environment should include a full suite of development
tools needed to support the various process workflows and to support
round-trip engineering to the maximum extent possible. '

3. The maintenance environment should typically coincide with a mature ver-
sion of the development environment. In some cases, the maintenance envi-
ronment may be a subset of the development environment delivered as one
of the project’s end products.

Ques5a. Define metrics and discuss characteristics of a good metric.
Metrics: Software process and project metrics are quantitative measures that enable software
engineers to gain insight into the efficiency of the software process and the projects conducted
using the process framework.

The basic characteristics of a good metric are as follows:

1. It is considered meaningful by the customer, manager, and performer. If
any one of these stakeholders does not see the metric as meaningful, it will
not be used. “The customer is always right” is a sales motto, not an engi-
neering tenet. Customers come to software engineering providers because
the providers are more expert than they are at developing and managing
software. Customers will accept metrics that are demonstrated to be mean-
ingful to the developer.

2. It demonstrates quantifiable correlation between process perturbations
and business performance. The only real organizational goals and objec-
tives are financial: cost reduction, revenue increase, and margin increase.

3. Itis objective and unambiguously defined. Objectivity should translate into
some form of numeric representation (such as numbers, percentages,
ratios) as opposed to textual representations (such as excellent, good, fair,
poor). Ambiguity is minimized through well-understood units of measure-
ment (such as staff-month, SLOC, change, function point, class, scenario,
requirement), which are surprisingly hard to define precisely in the soft-
ware engineering world.

4. It displays trends. This is an important characteristic. Understanding the
change in a metric’s value with respect to time, subsequent projects, subse-
quent releases, and so forth is an extremely important perspective, espe-
cially for today’s iterative development models. It is very rare that a given
metric drives the appropriate action directly. More typically, a metric pre-
sents a perspective. It is up to the decision authority (manager, team, or
other information processing entity) to interpret the metric and decide
what action is necessary.

-5. It is a natural by-product of the process. The metric does not introduce
new artifacts or overhead activities; it is derived directly from the main-
stream engineering and management workflows.

6. It is supported by automation. Experience has demonstrated that the most
successful metrics are those that are collected and reported by automated
tools, in part because software tools require rigorous definitions of the data
they process.

Ques5b. Write a short note on “Earned Value System”.
Modern software processes are amenable to financial performance measuremer

through an earned value approach. The basic parameters of an earned value syster
usually expressed in units of dollars, are as follows:

* Expenditure plan: the planned spending profile for a project over its
planned schedule. For most software projects (and other labor-intensive
projects), this profile generally tracks the statfing profile.

* Actual progress: the technical accomplishment relative to the planned
progress underlying the spending profile. In a healthy project, the actual
progress tracks planned progress closely.

» Actual cost: the actual spending profile for a project over its actual sched-
ule. In a healthy project, this profile tracks the planned profile closely.

» Earned value: the value that represents the planned cost of the actual
progress.

» Cost variance: the difference between the actual cost and the earned value.
Positive values correspond to over-budget situations; negative values corre-
spond to under-budget situations.

¢ Schedule variance: the difference between the planned cost and the earned
value. Positive values correspond to behind-schedule situations; negative
values correspond to ahead-of-schedule situations.

100%
Planned progress
(currently 35%) Expenditure
Actual progress: o : Plan
eamedvalue ~ \ [TR
m (currently 25%), \ VT
§ Actual cost
g expenditures
o (currently 15%)

| .

Time 100%

Ques5c. Discuss the “Tailoring” concept in context of software development. Explain the two primary
dimensions of process variability.
Tailoring concept (2 marks)
It is necessary to tailor the software management effort to the specific needs of project.
Tailoring in software development is the process of extracting a set of processes, task and
artifacts from the organization established process, task and artifacts to achieve its objectives.
Two primary dimensions of process variability are :-
Technical Complexity
Management Complexity

Higher Technical Complexity

* Embedded, real-time, distributed, fault-tolerant
* High-performance, portable
* Unprecedented, architecture re-engineering

Average software project: A O
510 10 people 00D
10 to 12 months weapon
310 5 extemal interfaces O O O sysrgm O)
Some unknowns, risks Embedded Telecom switch Nathnal Air
e automotive Commeércial Tratfic Control
application compiler System
Lower Higher
Management <— @, —» Management
Complexity O Large-scale Complexity
simulation
* Smaller scale Small scientific EO EO * Large scale
simulation nterprise nierprise
* Informal application information O * Contractual
* Few stakeholders Q (sléch as) systems DGO Lo Many stakeholders
u n order entry, managemen i H ”
* “Products Business information + “Projects
spreadsheet system

v
Lower Technical Complexity

» Straightforward automation, single thread
» Interactive performance, single platform
* Many precedent systems, application re-engineering

(Either the above diagram or its explanation — 3 marks)

Ques5d. Explain the process discriminators resulting from differences in process maturity.

-

PROCESS MATURE, LEVEL 3 OR 4
PRIMITIVE ORGANIZATION LEVEL 1 ORGANIZATION
Life-cycle phases Well-established criteria for {insignificant)
phase transitions
Artifacts Well-established format, con- Free-form
tent, and production methods
Workflow effort Well-established basis No basis
allocations
Checkpoints Well-defined combination of (insignificant)
formal and informal events
Management Predictable planning Informal planning and project control
discipline Objective status assessments
Automation Requires high levels of automa- Little automation or disconnected
discipline tion for round-trip engineering, islands of automation

change management, and pro-
cess instrumentation

Ques6a. Discuss the five recurring issues of conventional process. How are they resolved by modern
process framework?

1. Protracted integration and late design
breakage are resolved by forcing integra-
tion into the engineering stage. This is
achieved through continuous integration
of an architecture baseline supported
by executable demonstrations of the pri-
mary scenarios.

2. Late risk resolution is resolved by empha-
sizing an architecture-first approach, in

which the high-leverage elements of the system are elaborated early in the life
cycle.

3. The analysis paralysis of a requirements-driven functional decomposition
is avoided by organizing lower level specifications along the content of
releases rather than along the product decomposition (by subsystem, by
component, etc.).

4. Adversarial stakeholder relationships are avoided by providing much more
tangible and objective results throughout the life cycle.

5. The conventional focus on documents and review meetings is replaced by
a focus on demonstrable results and well-defined sets of artifacts, with
more-rigorous notations and extensive automation supporting a paperless
environment.

Ques6b. How is risk resolution carried out in the iterative process. What is its advantage?
According to modern project management ways, risk resolution is done very early in the life
cycle.
The engineering stage of the life cycle focuses on exploring the risk and resolving them before
production stage.
Entire project life cycle is divided into three different time period related to Risk resolution.
They are as follows:-
Risk Exploration Period (REP)
Risk Resolution Period (RRP)
Controlled Risk Management Period (CRMP)

Inception Elaboration Construction — Transition >
High
Controlled Risk
_____ Management Period
g
=
[72]
(=
Q.
x
(i
X
£
% . Conventional
@ _ . Project Risk Profile
o Modern Project .
a : : Risk Profile
Risk Exploration - Risk Resolution -~ ..
Period - Period :
Low

Project Life Cycle

Ques6c. How, balancing the top 10 software management principles, achieve balance in software
economics equation.

(Following diagram with its explanation)

Round-trip engineering Tackling the architecture Iterative and configurable

and process instrumentation first and change processes improve risk
improve the level of automation management early management and process
and insight into objective improves the ach|evable reuse across multiple

quality control. w \ projects.

'.@(Personnel)(EnvIronment)(Qualtty)(Size) P'°°°$9

l l

Evolving levels of detail Component-based

and a demonstration- development and model-
based approach improve based notation help reduce
communications among the overall size and
stakeholders. compexity of the solution.

Ques6d. Discuss nine best practices of software management.
1. Formal risk management.

A Using an iterative process that confronts risk is more or less what this is saying.
2. Agreement on interfaces.

A While we may use different words, this is exactly the same intent as my architec-
ture-first principle. Getting the architecture baselined forces the project to gain
agreement on the various external interfaces and the important internal interfaces,
all of which are inherent in the architecture.

3. Formal inspections.

A The assessment workflow 'thro'ughout the life cycle, along with the other engi-
neering workflows, must balance several different defect removal strategies. The
least important strategy, in terms of breadth, should be formal inspection, because
of its high costs in human resources and its low defect discovery rate for the critical
architectural defects that span multiple components and temporal complexity.

4. Metric-based scheduling and management.

A This important principle is directly related to my model-based notation and
objective quality control principles. Without rigorous notations for artifacts, the
measurement of progress and quality degenerates into subjective estimates.

5. Binary quality gates at the inch-pebble level.

A This practice is easy to misinterpret. Too many projects have taken exactly this
approach early in the life cycle and have laid out a highly detailed plan at great
expense. Three months later, when sorne of the requirements change or the archi-
tecture changes, a large percentage of the detailed planning must be rebaselined. A
better approach would be to maintain fidelity of the plan commensurate with an
understanding of the requirements and the architecture. Rather than inch pebbles, |
recommend establishing milestones in the engineering stage followed by inch pebbles
in the production stage. This is the primary message behind my evolving levels of
" detail principle.

6. Programuwide visibility of progress versus plan.

A This practice—namely, open communications among project team members—is
cbvigusly necessary. None of my principles traces directly to this practice. It seems so
obvious, | let it go without saying.

7. Defect tracking against quality targets.

A This important principle is directly related to my architecture-first and objec-
tive quality control principles. The make-or-break defects and quality targets are
architectural. Getting a handle on these qualities early and tracking their trends are
requirements for success.

8. Configuration management.

A The Airlie Software Council emphasized configuration management as key to
controlling complexity and tracking changes to all artifacts. It also recognized that
automation is important because of the volume and dynamics of modern; large-
scale projects, which make manual methods cost-prohibitive and error-prone. The
same reasoning is behind my change management principle.

9. People-aware management accountability.

A This is another management principle that seems so obvious, | let it go without
saying.

Ques7a. How “Peer Inspection” helps in improving ROI? Explain.

Peer Inspection : In software development, peer review is a type of software review in which a work

product (document, code, or other) is examined by its author and one or more colleagues, in order to
evaluate its technical content and quality.

Peer Inspection finds the problems very early in the project life cycle, hence improves the ROI. It
provide a significant return. One value of inspections is in the professional develop-

ment of a team. It is generally useful to have the products of junior team members
reviewed by senior mentors. Putting the products of amateurs into the hands of
experts and vice versa is a good mechanism for accelerating the acquisition of knowl-
edge and skill in new personnel. Gross blunders can be caught and feedback can be
appropriately channeled, so that bad practices are not perpetuated. This is one of the
best ways for junior software engineers to learn.

Ques7b. Explain in detail “Transition phase” of software development life cycle with the following
details: - primary objectives, essential activities & evaluation criteria.

http://en.wikipedia.org/wiki/Peer_review
http://en.wikipedia.org/wiki/Software_review

The transition phase is entered when a baseline is mature enough to be deployed in
the end-user domain. This typically requires that a usable subset of the system has
been achieved with acceptable quality levels and user documentation so that transi-
tion to the user will provide positive results. This phase could include any of the fol-
lowing activities:

1. Beta testing to validate the new system against user expectations

2. Beta testing and parallel operation relative to a legacy system it is replacing
3. Conversion of operational databases
4.

Training of users and maintainers

The transition phase concludes when the deployment baseline has achieved the
complete vision. For some projects, this life-cycle end point may coincide with the life-
cycle starting point for the next version of the product. For others, it may coincide
with a complete delivery of the information sets to a third party responsible for oper-
ation, maintenance, and enhancement.

The transition phase focuses on the activities required to place the software into
the hands of the users. Typically, this phase includes several iterations, including beta
releases, general availability releases, and bug-fix and enhancement releases. Consid-
erable effort is expended in developing user-oriented documentation, training users,
supporting users in their initial product use, and reacting to user feedback. (At this
point in the life cycle, user feedback should be confined mostly to product tuning,
configuring, installing, and usability issues.)

PRIMARY OBJECTIVES
* Achieving user self-supportability

* Achieving stakeholder concurrence that deployment baselines are complete
and consistent with the evaluation criteria of the vision

e Achieving final product baselines as rapidly and cost-effectively as practical

ESSENTIAL ACTIVITIES

* Synchronization and integration of concurrent construction increments
into consistent deployment baselines

¢ Deployment-specific engineering (cutover, commercial packaging and pro-
duction, sales rollout kit development, field personnel training)

¢ Assessment of deployment baselines against the complete vision and accep-
tance criteria in the requirements set

EVALUATION CRITERIA
e Is the user satisfied?

¢ Are actual resource expenditures versus planned expenditures acceptable?

Ques7c. What is the significance of periodic assessments? Discuss the contents of Status assessment

review.

Periodic status assessments serve as project snapshots. While the period may
vary, the recurring event forces the project history to be captured and documented.
Status assessments provide the following:

* A mechanism for openly addressing, communicating, and resolving man-
agement issues, technical issues, and project risks

* Objective data derived directly from on-going activities and evolving prod-

uct configurations

* A mechanism for disseminating process, progress, quality trends, practices,
and experience information to and from all stakeholders in an open forum

TOPIC

CONTENT

Personnel

Staffing plan vs. actuals

Attritions, additions

Financial trends

Expenditure plan vs. actuals for the previous, current, and next major
milestones

Revenue forecasts

Top 10 risks

Issues and criticality resolution plans

Quantification (cost, time, quality) of exposure

Technical progress

Configuration baseline schedules for major milestones
Software management metrics and indicators
Current change trends

Test and quality assessments

Major milestone plans
and results

Plan, schedule, and risks for the next major milestone

Pass/fail results for all acceptance criteria

Total product scope

Total size, growth, and acceptance criteria perturbations

Ques7d. Discuss the primitive components of a software change order.
The basic fields of the SCO are title, description, metrics, resolution, assessment

and disposition.

¢ Title. The title is suggested by the originator and is finalized upon accep-
tance by the configuration control board (CCB). This field should include a
reference to an external software problem report if the change was initiated
by an external person (such as a user).

¢ Description. The problem description includes the name of the originator,
date of origination, CCB-assigned SCO identifier, and relevant version
identifiers of related support software. The textual problem description
should provide as much detail as possible, along with attached code
excerpts, display snapshots, error messages, and any other data that may
help to isolate the problem or describe the change needed.

e Metrics. The metrics collected for each SCO are important for planning,
for scheduling, and for assessing quality improvement. Change categories
are type O (critical bug), type 1 (bug), type 2 (enhancement), type 3 (new
feature), and type 4 (other), as described later in this section. Upon accep-
tance of the SCO, initial estimates are made of the amount of breakage and
the effort required to resolve the problem. The breakage item quantifies the

® Resolution. This field includes the name of the person responsible for
implementing the change, the components changed, the actual metrics, and
a description of the change. Although the level of component fidelity with
which a project tracks change references can be tailored, in general, the
lowest level of component references should be kept at approximately the
level of allocation to an individual. For example, a “component” that is
allocated to a team is not a sufficiently detailed reference.

o Assessment. This field describes the assessment technique as either inspec-
tion, analysis, demonstration, or test. Where applicable, it should also ref-
erence all existing test cases and new test cases executed, and it should
identify all different test configurations, such as platforms, topologies, and
compilers.

e Disposition. The SCO is assigned one of the following states by the CCB:
® Proposed: written, pending CCB review
* Accepted: CCB-approved for resolution

* Rejected: closed, with rationale, such as not a problem, duplicate,
obsolete change, resolved by another SCO

e Archived: accepted but postponed until a later release
¢ In progress: assigned and actively being resolved by the development

organization

e In assessment: resolved by the development organization; being
assessed by a test organization

¢ Closed: completely resolved, with the concurrence of all CCB members

Ques7e. Write a short note on SPCP(software project control panel).

The SPCP is one example of a metrics automation approach that collects, orga-

nizes, and reports values and trends extracted directly from the evolving engineering
artifacts. Software engineers will accept metrics only if metrics are automated by the
environment,

Start the SPCP. The SPCP starts and shows the most current information
that was saved when the user last used the SPCP.

Select a panel preference. The user selects from a list of previously defined
default panel preferences. The SPCP displays the preference selected.

Select a value or graph metric. The user selects whether the metric should
be displayed for a given point in time or in a graph, as a trend. The default
for values is the most recent measurement available. The default for trends
is monthly.

Select to superimpose controls. The user points to a graphical object and
requests that the control values for that metric and point in time be dis-
played. In the case of trends, the controls are shown superimposed with the
metric.

Drill down to trend. The user points to a graphical object displaying a
point in time and drills down to view the trend for the metric.

Drill down to point in time. The user points to a graphical object display-
ing a trend and drills down to view the values for the metric.

Drill down to lower levels of information. The user points to a graphical
object displaying a point in time and drills down to view the next level of
information.

Drill down to lower level of indicators. The user points to a graphical
object displaying an indicator and drills down to view the breakdown of
the next level of indicators.

Ques7f. Write a short note on “Next Generation Cost Models™.

Effort = F(TArch’ sArch’ QArch’ PArch) + F(TAp_p’ sApp’ Q P

Time = F(P

Arch?

v

where:

Effort,) + F(P

App?’

App’ App)

Effort App)

T = technology parameter (environment automation support)

S = scale parameter (such as use cases, function points, source lines of code)
Q= quality parameter (such as portability, reliability, performance)
P = process parameter (such as maturity, domain experience)

Engineering Stage

Production Stage

Risk resolution, low-fidelity plan
Schedule/technology-driven
Risk sharing contracts/funding

Low-risk, high-fidelity plan
Cost-driven
Fixed-price contracts/funding

N-month design phase

Effort

Arch

Paen > 1.0

Size/Complexity

Team Size
Architecture: small team of software engineers
Applications: small team of domain engineers
Small and expert as possible

Product
Executable architecture
Production plans
Requirements

Focus
Design and integration
Host development environment

Phases
Inception and etaboration

M-month production increments

Effort

App

P 1.0

<
App

Size/Complexity

Team Size
Architecture: small team of software engineers
Applications: as many as needed
Large and diverse as needed

Product
Deliverable, useful function
Tested baselines
Warranted quality

Focus
Implement, test, and maintain
Target technology

Phases
Construction and transition

