
 Page 1 of 24

 (2½ Hours)

[Total Marks: 75]

N. B.: (1) All questions are compulsory.

 (2) Make suitable assumptions wherever necessary and state the assumptions made.

 (3) Answers to the same question must be written together.

 (4) Numbers to the right indicate marks.

 (5) Draw neat labeled diagrams wherever necessary.

 (6) Use of Non-programmable calculators is allowed.

1. Attempt any three of the following: 15

a. Explain foreach loop with suitable example.

Answer:

C# also provides a foreach loop that allows you to loop through the items in a set of

data. With a foreach loop, you don’t need to create an explicit counter variable.

Instead, you create a variable that represents the type of data for which you’re looking.

Your code will then loop until you’ve had a chance to process each piece of data in

the set.

The foreach loop is particularly useful for traversing the data in collections and arrays.

Example:

string[] stringArray = {"one", "two", "three"};

foreach (string element in stringArray)

{

// This code loops three times, with the element variable set to

// "one", then "two", and then "three".

System.Diagnostics.Debug.Write(element + " ");

}

In this case, the foreach loop examines each item in the array and tries to convert it to

a string. Thus, the foreach loop defifines a string variable named element. If you used

a different data type, you’d receive an error.

The foreach loop has one key limitation: it’s read-only. For example, if you wanted to

loop through an array and change the values in that array at the same time, foreach

code wouldn’t work. Here’s an example of some flflawed code:

int[] intArray = {1,2,3};

foreach (int num in intArray)

 Page 2 of 24

{

num += 1;

}

In this case, you would need to fall back on a basic for loop with a counter.

b. Distinguish between interface and abstract classes.

Answer:

Following are the important differences between Abstract Class and Interface.

Sr. No. Key Abstract Class Interface

1

Definition In terms of standard definition an

Abstract class is, conceptually, a class

that cannot be instantiated and is usually

implemented as a class that has one or

more pure virtual (abstract) functions.

On other hand an Interface is

a description of what member

functions must a class, which

inherits this interface,

implement. In other words, an

interface describes behaviour

of the class.

2

Implementa

tion

As like of other general class design in

C# Abstract class also have its own

implementation along with its

declaration.

On other hand an Interface

can only have a signature, not

the implementation. While its

implementation is being

provided by the class which

implements it.

3

Inheritance As per specification in C# a class can

extends only one other class hence

multiple inheritance is not achieved by

abstract class.

On other hand in case of

Interface a class can

implements multiple

interfaces and hence multiple

inheritance is achieved by

interface.

4

Constructor Like other classes in C# for instantiation

abstract class also have constructor which

provide an instance of abstract class to

access its non-static methods.

On other hand Interface do

not have constructor so we

can't instantiate an interface

directly although its method

could get accessed by

 Page 3 of 24

creating instance of class

which implementing it.

5

Modifiers As abstract class is most like of other

ordinary class in C# so it can contain

different types of access modifiers like

public, private, protected etc.

On other hand as Interface

needs to be get implemented

in order to provide its

methods implementation by

other class so can only

contains public access

modifier.

6

Performanc

e

As abstract class have its method as well

as their implementations also for its

abstract methods implementation it have

reference for its implementing class so

performance is comparatively faster as

compare to that of Interface.

On other hand the

performance of interface is

slow because it requires time

to search actual method in the

corresponding class.

c. What is namespace? Describe the System namespace.

Answer:

A namespace is designed for providing a way to keep one set of names separate from

another. The class names declared in one namespace does not conflict with the same

class names declared in another.

Defining a Namespace A namespace definition begins with the keyword namespace

followed by the namespace name as follows:

namespace namespace_name

{

// code declarations

}

Example:

using System;

namespace first_space

{

class namespace_cl

{

public void func()

{

Console.WriteLine("Inside first_space");

}

}

}

namespace second_space

{

class namespace_cl

 Page 4 of 24

{

public void func()

{

Console.WriteLine("Inside second_space");

}

}

}

class TestClass

{

static void Main(string[] args)

{

first_space.namespace_cl fc = new first_space.namespace_cl();

second_space.namespace_cl sc = new second_space.namespace_cl();

fc.func();

sc.func();

Console.ReadKey();

}

}

The using Keyword The using keyword states that the program is using the names in

the given namespace. For example, we are using the System namespace in our

programs. The class Console is defined there. We just write:

Console.WriteLine ("Hello there");

We could have written the fully qualified name as:

System.Console.WriteLine("Hello there");

Alias of Namespace:

using A=System.Console;

class Test

{

static void Main()

{

A.Write("Craetion of Alias");

A.ReadKey();

}

}

d. What is an assembly? Explain the difference between public and private

assembly.

Answer:

Assembly:

An assembly in ASP.NET is a collection of single-file or multiple files. The assembly

that has more than one file contains either a dynamic link library (DLL) or an EXE

file. The assembly also contains metadata that is known as assembly manifest.

The assembly manifest contains data about the versioning requirements of the

assembly, author name of the assembly, the security requirements that the assembly

requires to run, and the various files that form part of the assembly.

 Page 5 of 24

The biggest advantage of using ASP.NET Assemblies is that developers can create

applications without interfering with other applications on the system. When the

developer creates an application that requires an assembly that assembly will not

affect other applications.

The assembly used for one application is not applied to another application. However,

one assembly can be shared with other applications. In this case the assembly has to

be placed in the bin directory of the application that uses it.

This is in contrast to DLL in the past. Earlier developers used to share libraries of

code through DLL. To use the DLL that is developed by another developer for another

application, we must register that DLL in our machine. In ASP.NET, the assembly is

created by default whenever we build a DLL. We can check

the details of the manifest of the assembly by using classes located in the

System.Reflection namespace.

Thus, we can create two types of ASP.NET Assemblies in ASP.NET: private

ASP.NET Assemblies and shared assemblies.

Private Assembly:

Private ASP.NET Assemblies are created when you build component files like DLLs

that can be applied to one application.

Public Assembly:

Shared ASP.NET Assemblies are created when you want to share the component files

across multiple applications. Shared ASP.NET Assemblies must have a unique name

and must be placed in Global Assembly Cache (GAC). The GAC is located in the

Assembly directory in WinNT. You can view both the manifest and the IL using

ILDisassembler (ildasm.exe).

e. Write a sample C# program to demonstrate class, object and method call. Use

comments wherever require.

Answer:

using System;

class SampleClass

{

 //Method declared outside the main.

 void show()

 {

 int x = 100;

 int y = 200;

 Console.WriteLine(x);

 Console.WriteLine(y);

 }

 Page 6 of 24

 public static void Main()

 {

 //Object created

 SampleClass a = new SampleClass ();

 //Instance method called

 a.show();

 }

}

f. Define the accessibility modifiers-public, private, protected, internal, and

protected internal.

Answer:

public: The type or member can be accessed by any other code in the same assembly

or another assembly that references it. The accessibility level of public members of a

type is controlled by the accessibility level of the type itself.

private: The type or member can be accessed only by code in the same class or struct.

protected: The type or member can be accessed only by code in the same class, or in

a class that is derived from that class.

internal: The type or member can be accessed by any code in the same assembly, but

not from another assembly. In other words, internal types or members can be accessed

from code that is part of the same compilation.

protected internal: The type or member can be accessed by any code in the assembly

in which it's declared, or from within a derived class in another assembly.

private protected: The type or member can be accessed by types derived from

the class that are declared within its containing assembly.

Summary table:

Summary:

Caller's

location

public protected

internal

protected internal private

protected

private

Within the class YES YES YES YES YES YES

Derived class

(same assembly)

YES YES YES YES YES NO

Non-derived

class (same

assembly)

YES YES NO YES NO NO

Derived class

(different

assembly)

YES YES YES NO NO NO

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/public
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/private
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/protected
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/internal
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/protected-internal
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/private-protected

 Page 7 of 24

Non-derived

class (different

assembly)

YES NO NO NO NO NO

2. Attempt any three of the following: 15

a. What is postback? Explain IsPostBack property with suitable example.

Answer:

Postback:

In an ASP.NET web page, there’s at least one more element. Inside

the<body>element is a<form>element.

The<form>element is required because it defifines a portion of the page that can send

information back to the web server. This becomes important when you start adding

text boxes, lists, and other controls. As long as they’re in a form, information such as

the current text in the text box and the current selection in the list will be sent to the

web server by using a process known as a postback.

Example:

private void Page_Load()

{

 if (!IsPostBack)

 {

 Page 8 of 24

 // Validate() method will be called if page is loaded first time from server to the

client.

 Validate();

 }

}

b. List and describe the various file types used in an ASP.NET application.

Answer:

.aspx

An ASP.NET Web forms file (page) that can contain Web controls and presentation

and business logic.

.cs

Class source-code file that is compiled at run time. The class can be an HTTP Module,

an HTTP Handler, a code-behind file for an ASP.NET page, or a stand-alone class

file containing application logic.

.asax

Typically a Global.asax file that contains code that derives from the HttpApplication

class. This file represents the application and contains optional methods that run at

the start or end of the application lifetime.

.ascx

A Web user control file that defines a custom, reusable control.

.config

A configuration file (typically Web.config) containing XML elements that represent

settings for ASP.NET features.

.master

A master page that defines the layout for other Web pages in the application.

.sitemap

A site-map file that contains the structure of the Web site. ASP.NET comes with a

default site-map provider that uses site-map files to easily display a navigational

control in a Web page.

.skin

A skin file containing property settings to apply to Web controls for consistent

formatting.

c. What is an event? How is an event handler added?

Answer:

Event:

An event is an action or occurrence such as a mouse click, a key press, mouse

movements, or any system-generated notification.

 Page 9 of 24

Adding Event Handlers

Most of the code in an ASP.NET web page is placed inside event handlers that react

to web control events. Using

Visual Studio, you have three easy ways to add an event handler to your code:

Type it in manually: In this case, you add the subroutine directly to the page class in

your C# code file. You must specify the appropriate parameters.

Double-click a control in design view: In this case, Visual Studio will create an event

handler for that control’s default event, if it doesn’t already exist. For example, if you

double-click a Button control, it will create an event handler for the Button.Click

event.

If you double-click a TextBox control, you’ll get an event handler for the

TextBox.TextChanged event. If the event handler already exists, Visual Studio simply

takes you to the relevant place in your code.

Choose the event from the Properties window: Just select the control, and click the

lightning bolt in the Properties window. You’ll see a list of all the events provided by

that control. Double-click next to the event you want to handle, and Visual Studio will

automatically generate the event handler in your page class. Alternatively, if you’ve

already created the event handler method, just select the event in the Properties

window, and click the drop-down arrow at the right. You’ll see a list that includes all

the methods in your class that match the signature this event requires. You can then

choose a method from the list to connect it. Figure 4-13 shows an example where the

Button.Click event is connected to the Button1_Click method in the page class.

d. Write a short note on List controls in ASP.NET.

Answer:

List Controls

The list controls include the ListBox, DropDownList, CheckBoxList, RadioButtonList,

and BulletedList. They all work in essentially the same way but are rendered differently

in the browser. The ListBox, for example, is a rectangular list that displays several

entries, while the DropDownList shows only the selected item. The CheckBoxList and

RadioButtonList are similar to the ListBox, but every item is rendered as a check box

or option button, respectively. Finally, the BulletedList is the odd one out—it’s the only

list control that isn’t selectable.

Instead, it renders itself as a sequence of numbered or bulleted items.

All the selectable list controls provide a SelectedIndex property that indicates the

selected row as a zero based index (just like the HtmlSelect control you used in the

previous chapter). For example, if the first item in the list is selected, the SelectedIndex

will be 0. Selectable list controls also provide an additional SelectedItem property,

which allows your code to retrieve the ListItem object that represents the selected item.

 Page 10 of 24

The ListItem object provides three important properties: Text (the displayed content),

Value (the hidden value from the HTML

markup), and Selected (true or false depending on whether the item is selected).

In the previous chapter, you used code like this to retrieve the selected ListItem object

from an HtmlSelect control called Currency, as follows:

ListItem item;

item = Currency.Items[Currency.SelectedIndex];

If you used the ListBox web control, you can simplify this code with a clearer syntax:

ListItem item;

item = Currency.SelectedItem;

e. Explain the need of user control. How it is created and used?

Answer:

The web user controls are containers that can be created by combining one or more

web server controls. After creating a Web user control, you can treat it as a unit and

define properties and methods for it. They are similar to the ASP.NET web pages in

the context that they contain both a user interface page and code.

The file name extension of the user control is .ascx

A user control contains the @Control directive instead of the @Page directive

They cannot run as stand alone files. They need to be added to the ASP.NET pages

to make them work.

User controls do not have <html>, <body>, or <form> elements. The elements must

be present on the web page that is hosting these controls.

A web user control on a web page must be registered before it is used using @Register

directive.

Step1:

Open Visual Studio, Right click a website, select Add New Item,->Web User Control

and give it a new name example: myControl.ascx

<%@ Control Language="C#" AutoEventWireup="true"

CodeFile="myControl.ascx.cs" Inherits="myControl" %>

<asp:Button ID="tbShow" runat="server" Font-Bold="True" Font-Size="Larger"

 onclick="tbShow_Click" Text="Show" />

<asp:Label ID="lblMessage" runat="server" Font-Bold="True" Font-

Size="Larger"></asp:Label>

myControl.ascx.cs

public partial class myControl : System.Web.UI.UserControl

{

 protected void tbShow_Click(object sender, EventArgs e)

 Page 11 of 24

 {

 lblMessage.Text = "Hello from User Control";

 }

}

Step2:

Include User Control to web form:

After creating User Control we have to include that to our web form. So here we have

to crate @Register directive that includes following attributes,

A TagPrefix attribute, which associates a prefix with the user control. This prefix

will be included in opening tag of the user control element.

A TagName attribute, which associates a name with the user control. This name

will be included in the opening tag of the user control element.

A Src attribute, which defines the virtual path to the user control file that you are

including.

UseUserControl.aspx

<%@ Page Language="C#" AutoEventWireup="true"

CodeFile="UserControlUseEx.aspx.cs" Inherits="UserControlUseEx" %>

<%@ Register TagPrefix="Jeet" TagName="Message" Src="~/myControl.ascx" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title></title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <Jeet:Message ID="firstUserControl" runat="server" />

 </div>

 </form>

</body>

</html>

f. What is the purpose of validation controls? List and explain the use of validation

controls available in ASP.NET.

Answer:

Validation is important part of any web application. User's input must always be

validated before

sending across different layers of the application.

Validation controls are used to:

 Implement presentation logic.

 To validate user input data.

 Data format, data type and data range is used for validation.

 Validation Controls in ASP.NET

 Page 12 of 24

3. Attempt any three of the following: 15

a. Describe the use of multiple catch statements in exception handling using

example.

Answer:

b. What is QueryString? How to send a name and marks of a student from one web

page to another web page using QueryString?

Answer:

QueryString:

Query String is the most simple and efficient way of maintaining information across

requests.

The information we want to maintain will be sent along with the URL. A typical URL

with a query string looks like

www.somewebsite.com/search.aspx?query=value1

The URL part which comes after the ? symbol is called a QueryString.

QueryString has two parts, a key and a value. In the above example, query is the key

and value is its value.

Example:

We can send multiple values through querystring, separated by the & symbol. The

following code shows sending multiple values to the foo.aspx page.

Response.Redirect("foo.aspx?name=john&marks=87");

The following code shows reading the QueryString values in Page2.aspx

string name = Request.QueryString["name"];

 Page 13 of 24

string marks = Request.QueryString["marks"];

c. Explain the events in global.asax file with respect to state management.

Answer:

Global.asax file contains the following events

d. How the connection between the content page and the master page is established?

Answer:

Content Pages

You define the content for the master page's placeholder controls by creating individual

content pages, which are ASP.NET pages (.aspx files and, optionally, code-behind files)

that are bound to a specific master page. The binding is established in the content

page's @ Page directive by including a MasterPageFile attribute that points to the

master page to be used. For example, a content page might have the

following @ Page directive, which binds it to the Master1.master page.

<%@ Page Language="C#" MasterPageFile="~/MasterPages/Master1.master"

Title="Content Page"%>

In the content page, you create the content by adding Content controls and mapping

them to ContentPlaceHolder controls on the master page.

For example, the master page might have content placeholders called Main and Footer.

In the content page, you can create two Content controls, one that is mapped to

the ContentPlaceHolder control Main and the other mapped to

the ContentPlaceHolder control Footer, as shown in the following figure.

 Page 14 of 24

Replacing placeholder content

A content page might look like the following.

<% @ Page Language="C#" MasterPageFile="~/Master.master" Title="Content Page

1" %>

<asp:Content ID="Content1" ContentPlaceHolderID="Main" Runat="Server">

 Main content.

</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="Footer" Runat="Server" >

 Footer content.

</asp:content>

e. What is the theme? Explain how to create and use a theme on a website.

Answer:

Theme:

A theme is a collection of property settings that allow you to define the look of pages

and controls, and then apply the look consistently across pages in a Web application,

across an entire Web application, or across all Web applications on a server.

To create a page theme

1. In Solution Explorer, right-click the name of the Web site for which you want

to create a page theme, and then click Add ASP.NET Folder.

2. Click Theme.

3. If the App_Themes folder does not already exist, Visual Web Developer

creates it. Visual Web Developer then creates a new folder for the theme as a

child folder of the App_Themes folder.

4. Type a name for the new folder.

 Page 15 of 24

5. The name of this folder is also the name of the page theme. For example, if

you create a folder named \App_Themes\FirstTheme, the name of your theme is

FirstTheme.

Add files to your new folder for control skins, style sheets, and images that make

up the theme.

To add a skin file and a skin to a page theme

1. In Solution Explorer, right-click the name of your theme and then click Add

New Item.

2. In the Add New Item dialog box, click Skin File.

3. In the Name box, type a name for the .skin file, and then click Add.

4. The typical convention is to create one .skin file per control, such as

Button.skin or Calendar.skin. However, you can create as many or as few .skin

files as you need.

5. In the .skin file, add a normal control definition by using declarative syntax,

but include only the properties that you want to set for the theme. The control

definition must include the runat="server" attribute, and it must not include the

ID="" attribute.

The following code example shows a default control skin for

a Button control, defining the color and font for all of the Button controls in

the theme.

<asp:Button runat="server" BackColor="Red" ForeColor="White" Font-

Name="Arial" Font-Size="9px" />

f. What is URL mapping? How is URL mapping and routing implemented in

ASP.NET?

Answer:

URL Mapping-2 Marks

Steps/Example-3 Marks

4. Attempt any three of the following: 15

a Describe the SqlConnection class with an example.

Answer:

Connection

To interact with a database, we must have a connection to it. The connection helps

identify the database server, the database name, user name, password, and other

parameters that are required for connecting to the data base.

A connection object is used by command objects so they will know which database to

execute the command on.

https://msdn.microsoft.com/en-us/library/3e83tsk6(v=vs.100)

 Page 16 of 24

Connection Object is used for connecting your application to data source or database.

It carries required authentic information like username and password in the connection

string and opens a connection. You need to different type of connection object for

different type of data providers. For example:

OLE DB – OleDbConnection

SQL Server – SqlConnection

ODBC – OdbcConnection

Oracle – OracleConnection

Example:

SqlConnection conn = new SqlConnection (“Data Source =(local);Initial

Catalog=WorkingDatabase;Integrated Security=SSPI”;

Parameter Name Description

Data Source
This identifies the server as local, a domain name, or an IP

address.

Initial Catalog This specifies the database by name.

Integrated

Security

When set to SSPI, this connects with a user's Windows

login.

User ID This provides the username for SQL Server.

Password
This provides the password associated with the SQL

Server username.

 Page 17 of 24

b Differentiate between DataSet and DataReader.

Answer:

c Write c# code to insert data in database table from text boxes. Write comments wherever

required.

Answer:

using System.Configuration;
public partial class InsertDetails : System.Web.UI.Page
{
 SqlConnection con = new
SqlConnection(ConfigurationManager.ConnectionStrings["ConnectionString"].ConnectionString);
 protected void Page_Load(object sender, EventArgs e)
 {
 con.Open();
 }
 protected void btSubmit_Click(object sender, EventArgs e)
 {
 SqlCommand cmd=new SqlCommand ("INSERT INTO tbl
VALUES("+txtID.Text+",'"+txtFName.Text+"','"+txtLName.Text +"','"+txtCity.Text+"')",con);
 cmd.ExecuteNonQuery();
 lblMessage.Visible=true;
 lblMessage.Text="Your data has been store successfully";

 txtID.Text="";
 txtFName.Text="";
 txtLName.Text="";
 txtCity.Text="";

 }
}

d What is use of data source control? Explain various types of data sources in ASP.NET.

The Data source control connects to and retrieves data from a data source and makes it available

for other controls to bind to, without requiring code. ASP.NET allows a variety of data sources

such as a database, an XML file, or a middle-tier business object.

The common data source controls are:

⚫ AccessDataSource – Enables you to work with a Microsoft Access database.

⚫ XmlDataSource – Enables you to work with an XML file.

 Page 18 of 24

⚫ SqlDataSource – Enables you to work with Microsoft SQL Server, OLE DB, ODBC, or

Oracle databases.

⚫ ObjectDataSource – Enables you to work with a business object or other class

⚫ SiteMapDataSource – Used for ASP.NET site navigation.

⚫ EntityDataSource - Enables you to bind to data that is based on the Entity Data Model.

⚫ LinqDataSource – Enables you to use Language-Integrated Query (LINQ) in an ASP.NET

Web page.

e Write a code to display data from a table named Students(RollNo, Name, Marks) and

display on grid view control when page is loaded.

Answer:

SqlConnection conn;

SqlDataAdapter adapter;

DataSet ds;

SqlCommand cmd;

string cs = ConfigurationManager.ConnectionStrings["conString"].ConnectionString; protected

void PopulateDetailView()

 {

 try

 {

 conn = new SqlConnection(cs);

 adapter = new SqlDataAdapter("select * from tblEmps", conn);

 ds = new DataSet();

 adapter.Fill(ds); DetailsView1.DataSource = ds; DetailsView1.DataBind();

 }

 catch (Exception ex)

 {

 Label1.Text = "ERROR :: " + ex.Message;

 }

 }

f Describe (i) ExecuteNonQuery, (ii) ExecuteScalar, and (iii) ExecuteReader.

Answer:

ExecuteScalar(): only returns the value from the first column of the first row of your

query.Execute Scalar will return single row single column value i.e. single value, on execution of

SQL Query or Stored procedure using command object. It’s very fast to retrieve single values

from database. Used to execute SQL Select command which is used to return a single value.

ExecuteScalar only returns the value from the first column of the first row of your query.

 Example: string result = (string)cmd.ExecuteScalar();

 Where cmd-is an object of SqlCommand class.

ExecuteReader(): returns an object that can iterate over the entire result set.

ExecuteNonQuery():
ExecuteNonQuery method will return number of rows effected with INSERT, DELETE or

UPDATE operations. This ExecuteNonQuery method will be used only for insert, update and

delete, Create, and SET statements.

 Page 19 of 24

ExecuteNonQuerydoes not return data at all. It returns only the number of rows affected by an

insert, update, or delete.

Example:
int result= cmd.ExecuteNonQuery();
 Where cmd-is an object of SqlCommand class.

5. Attempt any three of the following: 15

a. Write a code to write employee data as empId, empName, empDept, and empDesignation

data from text boxes to an XML file.

Answer:

Sample Code:

XmlTextWriter xWriter = new XmlTextWriter(Server.MapPath("EmployeeDetails.xml"),

Encoding.UTF8);

 xWriter.WriteStartDocument();

 //Create Parent element

 xWriter.WriteStartElement("EmployeeDetails");

 //Create Child elements

 xWriter.WriteStartElement("Details");

xWriter.WriteElementString("Id: ", txtId.Text);

 xWriter.WriteElementString("Name: ", txtName.Text);

 xWriter.WriteElementString("Department: ", txtDept.Text);

 xWriter.WriteElementString("Designation: ", empDesignation.Text);

 xWriter.WriteEndElement();

 //End writing top element and XML document

 xWriter.WriteEndElement();

 xWriter.WriteEndDocument();

 xWriter.Close();

b. What is XML? List and explain the various XML classes.

Answer:

Extensible Markup Language (XML) stores and transports data. If we use a XML file to store the

data then we can do operations with the XML file directly without using the database. The XML

format is supported for all applications.

It is independent of all software applications and it is accessible by all applications. It is a very

widely used format for exchanging data, mainly because it's easy readable for both humans and

machines. If we have ever written a website in HTML, XML will look very familiar to us, as it's

basically a stricter version of HTML. XML is made up of tags, attributes and values and looks

something like this:

<?xmlversion="1.0"encoding="utf-8"?>

<EmployeeInformation>

<Details>

<Name>Richa</Name>

 Page 20 of 24

<Emp_id>1</Emp_id>

<Qualification>MCA</Qualification>

</Details>

</EmployeeInformation>

XML Classes:

ASP.NET provides a rich set of classes for XML manipulation in several namespaces that start

with

System.Xml. The classes here allow us to read and write XML files, manipulate XML data in

memory, and even validate XML documents.

The following options for dealing with XML data:

XmlTextWriter

The XmlTextWriter class allows us to write XML to a file. This class contains a number of

methods and properties that will do a lot of the work for us. To use this class, we create a new

XmlTextWriter object.

XmlTextReader

Reading the XML document in our code is just as easy with the corresponding XmlTextReader

class. The XmlTextReader moves through our document from top to bottom, one node at a time.

We call the Read() method to move to the next node. This method returns true if there are more

nodes to read or false once it has read the final node.

XDocument

The XDocument class contains the information necessary for a valid XML document. This

includes an XML declaration, processing instructions, and comments. The XDocument makes it

easy to read and navigate XML content. We can use the static XDocument.Load() method to read

XML documents from a file, URI, or stream.

c. What do you mean by "authentication"? Describe its various types of authentication.

Answer:

Authentication:

Authentication is process of validating the identity of a user so the user can be granted access to an

application. A user must typically supply a user name and password to be authenticated.

After a user authenticated, the user must still be authorized to use the required application. The

process of granting user access to an application is called authorization.

ASP.NET supports 3 types of authentication as follows:

⚫ Forms Authentication,

⚫ Passport Authentication, and

⚫ Windows authentication providers.

d. Explain the use of UpdateProgress control in AJAX.

Answer:

 Page 21 of 24

The UpdateProgress control

works in conjunction with the UpdatePanel. Essentially, the UpdateProgress control allows you to

show a message while a time-consuming update is under way.

The markup for this page defines an UpdatePanel followed by an UpdateProgress:

<asp:UpdatePanel ID ="UpdatePanel1" runat="server">

 <ContentTemplate>

 <div style= "background-color:#FFFFE0;padding: 20px">

 <asp:Label ID = "lblTime" runat= "server" Font-Bold= "True" > </asp:Label>

< br />

 <asp:Button ID ="cmdRefreshTime" runat="server" OnClick= "cmdRefreshTime_Click"

Text= "Start the Refresh Process" />

 </div>

 </ContentTemplate>

</asp:UpdatePanel>

 <asp:UpdateProgress ID ="updateProgress1" runat ="server">

 <ProgressTemplate>

 <div style= "font-size: xx-small">

 Contacting Server …

 </div>

 </ProgressTemplate>

</asp:UpdateProgress>

This isn’t the only possible arrangement. Depending on the layout you want, you can place your

UpdateProgress control somewhere inside your UpdatePanel control.

The code for this page has a slight modification from the earlier examples. Because the

UpdateProgress control shows its content only while the asynchronous callback is under way, it

makes sense to use the control only with an operation that takes time. Otherwise, the

UpdateProgress will show its ProgressTemplate for only a few fractions of a second. To simulate a

slow process, you can add a line to delay your code 10 seconds, as shown here:

protected void cmdRefreshTime_Click(object sender, EventArgs e)

{

 System.Threading.Thread.Sleep(TimeSpan.FromSeconds(10));

 lblTime.Text= DateTime.Now.ToLongTimeString();

}

e. What is use of timer control? Write the steps with appropriate code to create an application

to display real-time timing (clock) on an asp.net web page.

Answer:

Timer controls allow us to do postbacks at certain intervals. If used together with UpdatePanel,

which is the most common approach, it allows for timed partial updates of our page, but it can be

used for posting back the entire page as well.

The Timer control uses the interval attribute to define the number of milliseconds to occur before

firing the Tick event.

 Page 22 of 24

<asp:Timer ID="Timer1" runat="server" Interval="2000" OnTick="Timer1_Tick">

</asp:Timer>

Example:

Here is a small example of using the Timer control. It simply updates a timestamp every 5

seconds.

<asp:ScriptManager ID="ScriptManager1" runat="server" />

<asp:Timer runat="server" id="UpdateTimer" interval="5000" ontick="UpdateTimer_Tick"/>

<asp:UpdatePanel runat="server" id="TimedPanel" updatemode="Conditional">

<Triggers>

<asp:AsyncPostBackTrigger controlid="UpdateTimer" eventname="Tick" />

</Triggers>

<ContentTemplate>

<asp:Label runat="server" id="DateStampLabel" />

</ContentTemplate>

</asp:UpdatePanel>

We only have a single CodeBehind function, which we should add to our CodeBehind file:

protected void UpdateTimer_Tick(object sender, EventArgs e)

{

DateStampLabel.Text = DateTime.Now.ToString();

}

f. What are the benefits using Ajax? Explain UpdatePanel and ScriptManager.

Answer:

 Page 23 of 24

Benefits of AJAX

⚫ Reduce the traffic travels between the client and the server.

⚫ Response time is faster so increases performance and speed.

⚫ You can use JSON (JavaScript Object Notation) which is alternative to XML. JSON is key

value pair and works like an array.

⚫ Ready Open source JavaScript libraries available for use – JQuery, etc..

⚫ AJAX communicates over HTTP Protocol.

The ScriptManager Control

The ScriptManager control is the most important control and must be present on the page for other controls to
work.

It has the basic syntax:

<asp:ScriptManager ID="ScriptManager1" runat="server">

</asp:ScriptManager>

If you create an 'Ajax Enabled site' or add an 'AJAX Web Form' from the 'Add Item' dialog box, the web form
automatically contains the script manager control. The ScriptManager control takes care of the client-side script

for all the server side controls.

The UpdatePanel Control:

The UpdatePanel control is a container control and derives from the Control class. It acts as a container for the child controls within it and

does not have its own interface. When a control inside it triggers a post back, the UpdatePanel intervenes to initiate the post

asynchronously and update just that portion of the page.

For example, if a button control is inside the update panel and it is clicked, only the controls within the update panel will be affected, the

controls on the other parts of the page will not be affected. This is called the partial post back or the asynchronous post back

Properties of the UpdatePanel Control:

The following table shows the properties of the update panel control:

Properties Description

ChildrenAsTriggers This property indicates whether the post backs are coming from the child
controls which will cause the update panel to refresh.

ContentTemplate It is the content template and defines what appears in the update panel
when it is rendered.

ContentTemplateContainer Retrieves the dynamically created template container object and used for
adding child controls programmatically.

IsInPartialRendering Indicates whether the panel is being updated as part of the partial post
back.

RenderMode Shows the render modes. The available modes are Block and Inline.

UpdateMode Gets or sets the rendering mode by determining some conditions.

Triggers Defines the collection trigger objects each corresponding to an event
causing the panel to refresh automatically.

Methods of the UpdatePanel Control:

http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

 Page 24 of 24

The following table shows the methods of the update panel control:

Methods Description

CreateContentTemplateContainer Creates a Control object that acts as a container for child controls that

define the UpdatePanel control's content.

CreateControlCollection Returns the collection of all controls that are contained in the
UpdatePanel control.

Initialize Initializes the UpdatePanel control trigger collection if partial-page
rendering is enabled.

Update Causes an update of the content
