1.	Attempt any three of the following:	$\mathbf{1 5}$
a.	Explain Artificial Intelligence with Turing Test approach.	
	Turing Test, proposed by Alan Turing (1950). -To provide a satisfactory operational definition of intelligence. A computer passes the test if a human interrogator, after posing some written questions, cannot tell whether the written responses come from a person or from a computer. Programming a computer to pass a rigorously applied test provides plenty to work on. The computer would need to possess the following capabilities: - Natural Language Processing to enable it to communicate successfully in English; - Knowledge Representation to store what it knows or hears; -Automated Reasoning to use the stored information to answer questions and to draw new conclusions;	$\mathbf{2}$

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& Agent Type \& \begin{tabular}{l}
Performance \\
Measure
\end{tabular} \& Environment \& Actuators \& Sensors \& \multirow{3}{*}{Any 2
\[
2 \times 2=4
\]} \\
\hline \& Taxi driver \& Safe, fast, legal, comfortable trip, maximize profits \& Roads, other traffic, pedestrians, customers \& Steering, accelerator, brake, signal, horn, display \& Cameras, sonar, speedometer, GPS, odometer, accelerometer, engine sensors, keyboard \& \\
\hline \& Medical diagnosis system \& Healthy patient, reduced costs \& Patient, hospital, staff \& Display off questions, tests, diagnoses, treatments, referrals \& Keyboard entry of symptoms, findings, patient's answers \& \\
\hline \& Satellite image analysis system \& Correct image categorization \& Downlink from orbiting satellite \& Display of scene categorization \& Color pixel arrays \& \\
\hline \& Part-picking robot \& Percentage of parts in correct bins \& Conveyor belt with parts; bins \& Jointed arm and hand \& Camera, joint angle sensors \& \\
\hline \& Refinery controller \& Purity, yield, safety \& Refinery, operators \& Valves, pumps, heaters, displays \& Temperature, pressure, chemical sensors \& \\
\hline \& Interactive English tutor \& Student's score on test \& Set of students, testing agency \& Display of exercises, suggestions, corrections \& Keyboard entry \& \\
\hline e. \& \begin{tabular}{l}
Explain followin \\
i) Single Agent \\
ii) Episodic vs.
\end{tabular} \& task environm Multiagent quential \& \& \& \& \\
\hline \& \begin{tabular}{l}
i) Sing \\
An agent solving an agent playing chess is a comp Taxi-driving env so it is a partially \\
ii) Epis \\
In an episodic agent receives spot defective p decision doesn' other hand, the sequential: in environments ar to think ahead.
\end{tabular} \& Agent vs. Mul crossword pu hess is in a two itive multiage onment avoiding cooperative m ic vs. Sequent environment, ercept and the s on an assem ffect whether rrent decision h cases, shor much simpler \& \begin{tabular}{l}
gent \\
e by itself is gent environm nvironment. collisions max iagent environ \\
e agent's exp performs a sin line bases next part is uld affect all rm actions n sequential
\end{tabular} \& \begin{tabular}{l}
arly in a singl t. \\
izes the perfo ent. \\
ience is divid action. For decision on fective. In seq ture decision have long-t ironments be
\end{tabular} \& \begin{tabular}{l}
gent environ \\
ance measur \\
into atomic ample, an ag e current part. ntial environ Chess and ta \(m\) consequen use the agent
\end{tabular} \& \(11 / 2\)

$21 / 2$ \\
\hline f. \& Describe the stru \& re of Utility b \& d Agent. \& \& \& \\
\hline
\end{tabular}

b.	Define the following terms: i) State Space of problem ii) Path in State Space iii) Goal Test iv) Path Cost iv) Optimal Solution to problem	
	i) State Space of problem :The set of all states reachable from the initial state by executing any sequence of actions.State is the representation of all possible outcomes. ii) Path in State Space:A sequence of states connected by a sequence of actions, in a givenstate space. iii) Goal Test: Test to deteermine whether the current state is the goal state or not.It can be carried out by comparing currnt state with the defined goal state. iv) Path Cost:The cost associated with each step to be taken to reach to reach to the goal state.Cost function chosen by the problem solving agent is used to find the cost. v) Optimal Solution to problem:The solution with least path cost among all solutions.	1 1 1 1 1
c.	Give the outline of Breadth First Search algorithm with respect to Artificial Intelligence.	
	Breadth-First Search (BFS) - Proceeds level by level down the search tree - Starting from the root node (initial state) explores all children of the root node, left to right - If no solution is found, expands the first (leftmost) child of the root node, then expands the second node at depth 1 and so on ... - Process i) Place the start node in the queue ii) Examine the node at the front of the queue a) If the queue is empty, stop b) If the node is the goal, stop - Otherwise, add the children of the node to the end of the queue function BREADTH-FIRST-SEARCH (problem) returns a solution, or failure node \leftarrow a node with STATE $=$ problem.InITIAL-STATE, $\mathrm{PATH}-\operatorname{COST}=0$ if problem.GOAL-TEST(node.STATE) then return SOLUTION(node) frontier $\leftarrow \mathrm{a}$ FIFO queue with node as the only element explored \leftarrow an empty set loop do if EMPTY? (frontier) then return failure node $\leftarrow \operatorname{POP}($ frontier $) \quad / *$ chooses the shallowest node in frontier */ add node.STATE to explored for each action in problem.ACTIONS(node.STATE) do child \leftarrow CHILD-NODE (problem, node, action) if child.STATE is not in explored or frontier then if problem.GOAL-TEST(child.STATE) then return SOLUTION(child) frontier \leftarrow INSERT (child, frontier)	2 2
	Example (Find path from A to D) - (A)	1
d.	With the Local Search algorithm explain the following concepts: i) Shoulder ii) Global Maximum iii) Local Maximum	
	i) Shoulder: A plateau is a flat area of the state-space landscape. It can be a flat local maximum, from which no uphill exit exists, or a shoulder, from which progress is possible.	1

For example, the algorithm first recurses down to the three bottomleft nodes and uses the UTility function on them to discover that their values are 3,12 , and 8 , respectively. Then it takes the minimum of these values, 3 , and returns it as the backedup value of node B. A similar process gives the backed-up values of 2 for C and 2 for D .
Finally, we take the maximum of 3,2 , and 2 to get the backed-up value of 3 for the root node. If the maximum depth of the tree is m and there are b legal moves at each point, then the time complexity of the minimax algorithm is $\mathrm{O}\left(\mathrm{b}^{\mathrm{m}}\right)$. The space complexity is $\mathrm{O}(\mathrm{bm})$ for an algorithm that generates all actions at once, or $\mathrm{O}(\mathrm{m})$ for an algorithm that generates actions one at a time.
b. Describe the technique of Alpha-Beta Pruning.

- The problem with minimax search is that the number of game states it has to examine is exponential in the depth of the tree. When alpha beta pruning applied to a standard minimax tree, it returns the same move as minimax would, but prunes away branches that cannot possibly influence the final decision.

(b)

(c)

(d)

(e)

(f)

> MINIMAX(root $)=\max (\min (3,12,8), \min (2, x, y), \min (14,5,2))$
> $=\max (3, \min (2, x, y), 2)$
> $=\max (3, z, 2)$ where $z=\min (2, x, y) \leq 2$
> $=3$

Alpha-beta pruning can be applied to trees of any depth, and it is often possible to prune entire subtrees rather than just leaves.
If Player has a better choice \mathbf{m} either at the parent node of \mathbf{n} or at any choice point further up, then \mathbf{n} will never be reached in actual play. So once we have found out enough about \mathbf{n} (by examining some of its descendants) to reach this conclusion, we can prune it.
$\alpha=$ the value of the best (i.e., highest-value) choice at any choice point along the path for MAX.
$\beta=$ the value of the best (i.e., lowest-value) choice at any choice point along the path for MIN.
c. Write a short note on Kriegspiel's Partially observable chess.

- Kriegspiel, a partially observable variant of chess in which pieces can move but are completely invisible to the opponent.
- The rules of Kriegspiel are as follows:

White and Black each see a board containing only their own pieces. A referee, who can see all the pieces, adjudicates the game and periodically makes announcements that are heard by both players. On his turn, White proposes to the referee any move that would be legal if there were no black pieces. If the move is in fact not legal (because of the black pieces), the referee announces "illegal." Whitemay keep proposing moves until a legal one is found and learns more about the location of Black's pieces in the process. Once a legal move is proposed, the referee announces one or more of the following: "Capture on square X " if there is a capture, and "Check by D " if the black king is in check, where D is the direction of the check, and can be one of "Knight", "Rank," "File," "Long
diagonal," or "Short diagonal". If Black is checkmated or stalemated, the referee says so; otherwise, it is Black's turn to move.

- Belief State is the set of all logically possible board states given percepts. Initially, White's belief state is a singleton because Black's pieces haven't moved yet. After White makes a move and Black responds, White's belief state contains 20 positions because Black has 20 replies to any White move. Keeping track of the belief state as the game progresses is exactly the problem of state estimation. Kriegspiel state estimation mapped onto the partially observable, nondeterministic .If we consider the opponent as the source of nondeterminism; that is, the ResUlt of White's move are composed from the (predictable) outcome of White's own move and the unpredictable outcome given by Black's reply.
- Given a current belief state, White may ask, "Can I win the game?" For a partially observable game, the notion of a strategy is altered; instead of specifying a move to make for each possible move the opponent might make, we need a move for every possible percept sequence that might be received. For Kriegspiel, a winning strategy, or guaranteed checkmate, is one that, for each possible percept sequence, leads to an actual checkmate for every possible board state in the current belief state, regardless of how the opponent moves. Figure shows part of a guaranteed checkmate for the KRK (king and rook against king) endgame. In this case, Black has just one piece (the king), so a belief state for White can be shown in a single board by marking each possible position of the Black king.

- The general AND-OR search algorithm can be applied to the belief-state space to find guaranteed checkmates. Kriegspiel admits an entirely new concept that makes no sense in fully observable games: probabilistic checkmate. Such checkmates are still required to work in every board state in the belief state; they are probabilistic with respect to randomization of the winning player's moves. To get the basic idea, consider the problem of finding a lone black king using just the white king. Simply by moving randomly, the white king will eventually bump into the black king even if the latter tries to avoid this fate, since Black cannot keep guessing the right evasive moves indefinitely. In the terminology of probability theory, detection occurs with probability 1.
d. What is knowledge based agent? Explain its importance in problem solving techniques.
- The central component of a knowledge-based agent is its knowledge base, or KB.
- A knowledge base is a set of sentences.
- Each sentence is expressed in a language called a knowledge representation language and represents some assertion about the world.
- A sentence dignified with the name axiom, when the sentence is taken as given without being derived from other sentences.
- To add new sentences to the knowledge base, query operations are Tell and Ask used. Both operations may involve inference - that is, deriving new sentences from old.

	- Like all our agents,it takes a percept as input and returns an action. The agent maintains a knowledge base, KB , which may initially contain some background knowledge. - Each time the agent program is called, it does three things. - First, it Tells the knowledge base what it perceives. - Second, it Asks the knowledge base what action it should perform. - Third, the agent program Tells the knowledge base which action was chosen, and the agent executes the action. Make-Percept-Sentence constructs a sentence asserting that the agent perceived the given percept at the given time. MAKe-Action-Query constructs a sentence that asks what action should be done at the current time. MAKe-Action-Sentence constructs a sentence asserting that the chosen action was executed. The details of the inference mechanisms are hidden inside Tell and Ask. - Knowledge Level-describes agent by saying what it knows - Implementation level - knows that that will achieve its goal There are mainly two approaches to build a knowledge-based agent: - Declarative approach: Knowledge-based agent initialized with an empty knowledge base and telling the agent all the sentences with which we want to start with. This approach is called Declarative approach. - Procedural approach: Directly encoding desired behavior as a program code.	1 2
e.	Write a short note on Wumpus world problem.	
	Wumpus eats anyone that enters its room - Wumpus can be shot by an agent, but agent has one arrow - Pits trap the agent (but not the wumpus) - Agent's goal is to pick up the gold - Performance measure: -+1000 for picking up gold, -1000 for death (meeting a live wumpus or falling into a pit) -1 for each action taken, -10 for using arrow - Environment: - 4×4 grid of rooms - Agent starts in $(1,1)$ and faces right - Geography determined at the start: - Gold and wumpus locations chosen randomly - Each square other than start can be a pit with probability 0.2 - Actuators: - Movement: - Agent can move forward - Turn 90 degrees left or right - Grab: - pick up an object in same square - Shoot: fire arrow in straight line in the direction agent is facing - Sensors: - Returns a 5-tuple of five symbols eg. [stench, breeze, glitter, bump, scream] - In squares adjacent to the wumpus, agent perceives a stench - In squares adjacent to a pit, agent perceives a breeze - In squares containing gold, agent perceives a glitter - When agent walks into a wall, it perceives a bump - When wumpus is killed, it emits a woeful scream that is perceived anywhere - Initial knowledge base contains: - Agent knows it is in [1,1] - Agent knows it is a safe square	3

Two later stages in the progress of the agent. (a) After the third move, with percept [Stench, None, None, None, None]. (b) After the fifth move, with percept [Stench, Breese, Glitter, None, None].
f. Explain Forward-Chaining algorithm for Propositional definite Clauses.

	function PL-FC-ENTAILS? $(K B, q)$ returns true or false inputs: $K B$, the knowledge base, a set of propositional definite clauses q, the query, a proposition symbol count \leftarrow a table, where count $[c]$ is the number of symbols in c 's premise inferred \leftarrow a table, where inferred $[s]$ is initially false for all symbols agenda \leftarrow a queue of symbols, initially symbols known to be true in $K B$ while agenda is not empty do $p \leftarrow$ Pop $($ agenda) if $p=q$ then return true if inferred $[p]=$ false then inferred $[p] \leftarrow$ true for each clause c in $K B$ where p is in c.PREMISE do \quad decrement count $[c]$ if count $[c]=0$ then add c.ConcLusion to agenda return false The forward-chaining algorithm for propositional logic. The agenda keeps track of symbols known to be true but not yet "processed." The count table keeps track of how many premises of each implication are as yet unknown. Whenever a new symbol p from the agenda is processed, the count is reduced by one for each implication in whose premise p appears (easily identified in constant time with appropriate indexing.) If a count reaches zero, all the premises of the implication are known, so its conclusion can be added to the agenda. Finally, we need to keep track of which symbols have been processed; a symbol that is already in the set of inferred symbols need not be added to the agenda again. This avoids redundant work and prevents loops caused by implications such as $P \Rightarrow Q$ and $Q \Rightarrow P$.	3
	$\begin{aligned} & P \Rightarrow Q \\ & L \wedge M \Rightarrow P \\ & B \wedge L \Rightarrow M \\ & A \wedge P \Rightarrow L \\ & A \wedge B \Rightarrow L \end{aligned}$ (a) (b)	2
4.	Attempt any three of the following:	15
a.	What is meant by First Order Logic? Explain syntax and semantics of First Order Logic.	
	First-Order Logic is more expressive to represent a good deal of our commonsense knowledge. A term is a logical expression that refers to an object. First Order Logic symbol can be a constant term, a variable term or a function. Constant Term:Fixed value which belongs to the domain. Variable Term:Term which can be assigned values in the domain. Function: $\mathrm{t} 1, \mathrm{t} 2 \ldots$ are the terms then $\mathrm{f}(\mathrm{t} 1, \mathrm{t} 2 \ldots)$ is also a term.	1

```
Sentence \(\rightarrow\) AtomicSentence \(\mid\) ComplexSentence \(\quad \mathbf{2}\)
    AtomicSentence \(\rightarrow\) Predicate \(\mid\) Predicate \((\) Term,\(\ldots) \mid\) Term \(=\) Term
    ComplexSentence \(\rightarrow\) (Sentence) \(\mid\) [Sentence ]
        | \(\neg\) Sentence
        | Sentence \(\wedge\) Sentence
        | Sentence \(\vee\) Sentence
        \(\mid\) Sentence \(\Rightarrow\) Sentence
        \(\mid\) Sentence \(\Leftrightarrow\) Sentence
        | Quantifier Variable,... Sentence
        Term \(\rightarrow\) Function(Term,...)
            | Constant
            | Variable
Quantifier \(\rightarrow \forall \mid \exists\)
    Constant \(\rightarrow A\left|X_{1}\right|\) John \(\mid \cdots\)
    Variable \(\rightarrow a|x| s \mid \cdots\)
    Predicate \(\rightarrow\) True \(\mid\) False \(\mid\) After \(\mid\) Loves \(\mid\) Raining \(\mid \cdots\)
    Function \(\rightarrow\) Mother \(\mid\) LeftLeg \(\mid \cdots\)
Operator Precedence : \(\quad,=, \wedge, \vee, \Rightarrow, \Leftrightarrow\)
- An atomic sentence (or atom ) is formed from a predicate symbol optionally followed by
AtomicSentence \(\rightarrow\) Predicate \(\mid\) Predicate \((\) Term,\(\ldots) \mid\) Term \(=\) Term
ComplexSentence \(\rightarrow\) (Sentence) |[ Sentence]
| \(\neg\) Sentence
| Sentence \(\wedge\) Sentence
| Sentence \(\vee\) Sentence
\(\mid\) Sentence \(\Rightarrow\) Sentence
\(\mid\) Sentence \(\Leftrightarrow\) Sentence
| Quantifier Variable,... Sentence
Term \(\rightarrow\) Function (Term,...)
| Constant
| Variable
Quantifier \(\rightarrow \forall \mid \exists\)
Constant \(\rightarrow A\left|X_{1}\right|\) John \(\mid \cdots\)
Variable \(\rightarrow a|x| s \mid \cdots\)
Predicate \(\rightarrow\) True \(\mid\) False \(\mid\) After \(\mid\) Loves \(\mid\) Raining \(\mid \cdots\)
Function \(\rightarrow\) Mother \(\mid\) LeftLeg \(\mid \cdots\)
OPERATOR Precedence : \(\neg,=, \wedge, \vee, \Rightarrow, \Leftrightarrow\) a ATOM parenthesized list of terms, such as
Brother (Richard, John).
Atomic sentences can have complex terms as arguments. Thus,
Married(Father (Richard),Mother (John))
An atomic sentence is true in a given model if the relation referred to by the predicate symbol holds among the objects referred to by the arguments.
- Complex sentences
logical connectives to construct more complex sentences, with the same syntax and semantics as in propositional calculus. Here are four sentences that are true in the model
\(\neg\) Brother (LeftLeg(Richard), John)
Brother (Richard, John) ^ Brother (John,Richard)
King(Richard) \(\vee\) King(John)
\(\neg \operatorname{King}(\) Richard \() \Rightarrow \operatorname{King}(J o h n)\)
```


	6. Pose queries to the inference procedure and get answers. The inference procedure operate on the axioms and problem-specific facts to derive the facts we are interested in knowing. 7. Debug the knowledge base. The answers will be correct for the knowledge base as written, assuming that the inference procedure is sound, but they will not be the ones that the user is expecting.	
d	Write a short note on Unification Process.	
	Lifted inference rules require finding substitutions that make different logical expressions look identical. This process is called unification and is a key component of all first-order inference algorithms. The UnIFY algorithm takes two sentences and returns a unifier for them if one exists: $\operatorname{UNIFY}(p, q)=\theta$ where $\operatorname{SUBST}(\theta, p)=\operatorname{SUBST}(\theta, q)$. by finding all sentences in the knowledge base that unify with Knows(John, x). Here are the results of unification with four different sentences that might be in the knowledge base: UNIFY(Knows(John, x), Knows(John, Jane)) $=\{x / J a n e\}$ $\operatorname{UNIFY}(\operatorname{Knows}(J o h n, ~ x), \operatorname{Knows}(y$, Bill $))=\{x / B i l l, y / J o h n\}$ UNIFY(Knows(John, x), Knows(y,Mother (y))) $=\{y / J o h n, ~ x / M o t h e r ~(J o h n) ~\} ~$ $\operatorname{UNIFY}($ Knows $(J o h n, ~ x), ~ K n o w s(x, ~ E l i z a b e t h)) ~=~ f a i l ~ . ~$ The last unification fails because x cannot take on the values John and Elizabeth at the same time. Knows(x, Elizabeth) means "Everyone knows Elizabeth," This infers that John knows Elizabeth. The problem arises only because the two sentences happen to use the same variable name, x. The problem can be avoided by standardizing apart one of the two sentences being unified, which means renaming its variables to avoid name clashes. For example, we can rename x in Knows(x, Elizabeth) to x_{17} (a new variable name) without changing its meaning. Now the unification will work: $\operatorname{UNIFY}\left(\right.$ Knows $($ John, $x), \operatorname{Knows}\left(\mathrm{x}_{17}\right.$, Elizabeth $\left.)\right)=\left\{\mathrm{x} /\right.$ Elizabeth, $\mathrm{x}_{17} /$ John $\}$	1 2 2
e.	Explain Datalog used in first order definite clause.	
	Datalog is a language that is restricted to first-order definite clauses with no function symbols. A Datalog database is a collection of definite clauses where I Terms are just constants and variables, there are no function symbols with arity >0. I Every variable that occurs in the head must occur in the body. Consider the following problem: The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by ColonelWest, who is American. We will prove that West is a criminal. First, we will represent these facts as first-order definite clauses. $\operatorname{American}(\mathrm{x}) \wedge \operatorname{Weapon}(\mathrm{y}) \wedge \operatorname{Sells}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \wedge \operatorname{Hostile}(\mathrm{z}) \Rightarrow \operatorname{Criminal}(\mathrm{x})$. "Nono . . . has some missiles." The sentence \exists x Owns(Nono, x) \wedge Missile(x) is transformed into two definite clauses by Existential Instantiation, introducing a new constant M1: Owns(Nono,M1) Missile(M1)	2 1 2

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
"All of its missiles were sold to it by Colonel West": \\
Missile(x) \(\wedge\) Owns(Nono, \(x) \Rightarrow\) Sells(West, \(x\), Nono) \\
We will also need to know that missiles are weapons: \\
Missile(x) \(\Rightarrow\) Weapon (x) \\
and we must know that an enemy of America counts as "hostile": \\
Enemy (x,America) \(\Rightarrow\) Hostile(x). \\
"West, who is American . . .": \\
American(West) \\
"The country Nono, an enemy of America . . .": \\
Enemy(Nono,America) . (9.10) \\
This knowledge base contains no function symbols and is therefore an instance of the class of Datalog knowledge bases.
\end{tabular} \& \\
\hline f. \& Describe Backward-Chaining algorithm for First Order definite Clauses. \& \\
\hline \multirow[t]{4}{*}{} \& \begin{tabular}{l}
FOL-BC-AsK(KB,goal) is true if the knowledge base contains a clause of the form Ihs \(\Rightarrow\) goal, where Ihs (left-hand side) is a list of conjuncts. An atomic fact like American(West) is considered as a clause whose lhs is the empty list. For example, the query Person(x) could be proved with the substitution \{x/John\} as well as with \(\{\mathrm{x} /\) Richard \(\}\). \\
FOL-BC-AsK as a generator-a function that returns multiple times, each time giving one possible result.Backward chaining is a kind of AND/OR search-the OR part because the goal query can be proved by any rule in the knowledge base, and the and part because all the conjuncts in the lhs of a clause must be proved. FOL-BC-OR works by fetching all clauses that might unify with the goal, standardizing the variables in the clause to be brand-new variables, and then, if the rhs of the clause does indeed unify with the goal, proving every conjunct in the Ihs, using FOL-BC-AND. Backward chaining, as we have written it, is a depth-first search algorithm. function FOL-BC-ASK (KB, query) returns a generator of substitutions
\end{tabular} \& 2

2 \\
\hline \& ```
generator FOL-BC-OR(KB,goal, 0) yields a substitution
for each rule (lhs }=>\mathrm{ rhs) in Fetch-Rules-For-Goal(KB, goal) do
(lhs,rhs)\leftarrowSTANDARDIZE-VARIABLES((lhs,rhs))

```

```

 yield }\mp@subsup{0}{}{\prime
    ``` & \\
\hline & ```
generator FOL-BC-AND \((K B\), goals,\(\theta)\) yields a substitution
    if \(\theta=\) failure then return
    else if Length \((\) goals \()=0\) then yield \(\theta\)
    else do
        first,rest \(\leftarrow\) FIRST(goals), REST(goals)
        for each \(\theta^{\prime}\) in \(\operatorname{FOL}-\mathrm{BC}-\mathrm{Or}(K B, \operatorname{Subst}(\theta\), first \(), \theta)\) do
            for each \(\theta^{\prime \prime}\) in FOL-BC-AND \(\left(K B\right.\), rest, \(\left.\theta^{\prime}\right)\) do
                yield \(\theta^{\prime \prime}\)
``` & \\
\hline & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{l}
(a) Forward (progression) search \\
through the space of states, starting in the initial state and using the problem's actions to search forward for a member of the set of goal states. \\
Planning problems often have large state spaces. Consider an air cargo problem with 10 airports, where each airport has 5 planes and 20 pieces of cargo. The goal is to move all the cargo at airport A to airport \(B\). There is a simple solution to the problem: load the 20 pieces of cargo into one of the planes at A, fly the plane to \(B\), and unload the cargo. Finding the solution can be difficult because the average branching factor is huge: each of the 50 planes can fly to 9 other airports, and each of the 200 packages can be either unloaded (if it is loaded) or loaded into any plane at its airport (if it is unloaded). So in any state there is a minimum of 450 actions (when all the packages are at airports with no planes) and a maximum of 10,450 (when all packages and planes are at the same airport). On average, let's say there are about 2000 possible actions per state, so the search graph up to the depth of the obvious solution has about \(2000^{41}\) nodes.
\end{tabular} & 3 \\
\hline c. & Explain in brief about hierarchical planning. & \\
\hline & \begin{tabular}{l}
Hierarchical Planning is an Artificial Intelligence (AI) problem solving approach for a certain kind of planning problems -- the kind focusing on problem decomposition, where problems are step-wise refined into smaller and smaller ones until the problem is finally solved. A solution hereby is a sequence of actions that's executable in a given initial state . \\
AI systems will probably have to do what humans appear to do: plan at higher levels of abstraction. A reasonable plan for the Hawaii vacation might be "Go to San Francisco airport; take Hawaiian Airlines flight 11 to Honolulu; do vacation stuff for two weeks; take Hawaiian Airlines flight 12 back to San Francisco; go home." Given such a plan,the action "Go to San Francisco airport" can be viewed as a planning task in itself, with a solution such as "Drive to the long-term parking lot; park; take the shuttle to the terminal." \\
Each of these actions can be decomposed, until we reach the level of actions that can be executed without deliberation to generate the required motor control sequences. \\
In this example planning can occur both before and during the execution of the plan; for example, one would probably defer the problem of planning a route from a parking spot in long-term parking to the shuttle bus stop until a particular parking spot has been found during execution. Thus, that particular action will remain at an abstract level prior to the execution phase. \\
For example, complex software is created from a hierarchy of subroutines or object classes; armies operate as a hierarchy of units; is reduced to a small number of activities at the next lower level, so the computational cost of finding the correct way to arrange those activities for the current problem is small. Nonhierarchical methods reduce a task to a large number of individual actions; for large-scale problems, this is completely impractical.
\end{tabular} & \begin{tabular}{|c}
2 \\
2 \\
2 \\
1
\end{tabular} \\
\hline d. & Write a short note on Sensorless Planning Problem. & \\
\hline & \begin{tabular}{l}
Sensorless planning (also called conformant planning). \\
- Handles domains where the state of the world is not fully known. \\
- Comes up with plans that work in all possible cases. \\
- Handles domains where the state of the world is not fully known. \\
- Comes up with plans that work in all possible cases. \\
- Example: \\
- You have a wall made of bricks. \\
- You have a can of white paint. \\
- Action: Paint(brick), effect: Color(brick, white). \\
- Goal: every brick should be painted white \\
In a fully observable domain, you could: \\
- Know the initial color of every brick. \\
- Make a plan to paint all the bricks that are not white initially. \\
- No need to paint bricks that are already white.
\end{tabular} & 1
2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
Suppose the world is not fully observable. \\
- We actually cannot observe the color of a brick. \\
Suppose that the world is deterministic. \\
- The effects of an action are known in advance. \\
What plan would ensure achieving the goal? \\
- Paint all bricks, regardless of their initial color (which we don't know anyway). \\
- It may be overkill, since some bricks may already be white, but it is the only plan that guarantees achieving the goal. \\
Limitations: \\
- While there are a few domains simple enough to allow for sensorless planning \\
- Many real world domains are too complicated for this approach, and you can't come up with plans that work regardless of what the state of the world is.
\end{tabular} \\
\hline e. & What are events? Explain its importance. \\
\hline & \begin{tabular}{l}
Event calculus, which is based on points of time rather than on situations. \\
Event calculus reifies fluents and events. The fluent At(Shankar, Berkeley) is an object that refers to the fact of Shankar being in Berkeley, but does not by itself say anything about whether it is true. To assert that a fluent is actually true at some point in time we use the predicate T, as in \(\mathrm{T}(\mathrm{At}(\) Shankar , Berkeley \()\), t\()\). \\
Events are described as instances of event categories. The event E1 of Shankar flying from San Francisco to Washington, D.C. is described as \\
E1 \(\in\) Flyings \(\wedge\) Flyer (E1, Shankar \() \wedge\) Origin(E1, SF) \(\wedge\) Destination(E1,DC) . \\
If this is too verbose, we can define an alternative three-argument version of the category of flying events and say \\
E1 \(\in\) Flyings(Shankar , SF,DC) . \\
Happens(E1, i) to say that the event E1 took place over the time interval i, and \\
we say the same thing in functional form with \(\operatorname{Extent}(\mathrm{E} 1)=\mathrm{i}\). \\
We represent time intervals by a (start, end) pair of times; that is, \(\mathrm{i}=(\mathrm{t} 1, \mathrm{t} 2)\) is the time interval that starts at t 1 and endsat t 2 . The complete set of predicates for one version of the event calculus is \\
\(T(f, t)\) Fluent \(f\) is true at time \(t\) \\
Happens(e, i) Event e happens over the time interval i \\
Initiates(e, \(\mathrm{f}, \mathrm{t}\)) Event e causes fluent f to start to hold at time t \\
Terminates \((e, f, t)\) Event e causes fluent \(f\) to cease to hold at time \(t\) \\
Clipped(f, i) Fluent f ceases to be true at some point during time interval i \\
Restored (f, i) Fluent f becomes true sometime during time interval i
\end{tabular} \\
\hline & \begin{tabular}{l}
We assume a distinguished event, Start , that describes the initial state by saying which fluents are initiated or terminated at the start time. We define \(T\) by saying that a fluent holds at a point in time if the fluent was initiated by an event at some time in the past and was not made false (clipped) by an intervening event. A fluent does not hold if it was terminated by an event and not made true (restored) by another event. Formally, the axioms are: \\
Happens \((\mathrm{e},(\mathrm{t} 1, \mathrm{t} 2)) \wedge \operatorname{Initiates}(\mathrm{e}, \mathrm{f}, \mathrm{t}) \wedge \neg \operatorname{Clipped}(\mathrm{f},(\mathrm{t} 1, \mathrm{t})) \wedge \mathrm{t} 1<\mathrm{t} \Rightarrow \mathrm{T}(\mathrm{f}, \mathrm{t})\) \\
Happens \((\mathrm{e},(\mathrm{t} 1, \mathrm{t})) \wedge \operatorname{Terminates}(\mathrm{e}, \mathrm{f}, \mathrm{t}) \wedge \neg \operatorname{Restored}(\mathrm{f},(\mathrm{t} 1, \mathrm{t})) \wedge \mathrm{t} 1<\mathrm{t} \Rightarrow \neg \mathrm{T}(\mathrm{f}, \mathrm{t})\) \\
where Clipped and Restored are defined by Clipped \((\mathrm{f},(\mathrm{t} 1, \mathrm{t} 2)) \Leftrightarrow \exists \mathrm{e}, \mathrm{t}, \mathrm{t} 3\) \\
Happens \((\mathrm{e},(\mathrm{t}, \mathrm{t} 3)) \wedge \mathrm{t} 1 \leq \mathrm{t}<\mathrm{t} 2 \wedge \operatorname{Terminates}(\mathrm{e}, \mathrm{f}, \mathrm{t})\) \\
Restored \((\mathrm{f},(\mathrm{t} 1, \mathrm{t} 2)) \Leftrightarrow \exists \mathrm{e}, \mathrm{t}, \mathrm{t}_{3} \operatorname{Happens}(\mathrm{e},(\mathrm{t}, \mathrm{t} 3)) \wedge \mathrm{t}_{1} \leq \mathrm{t}<\mathrm{t}_{2} \wedge \operatorname{Initiates}(\mathrm{e}, \mathrm{f}, \mathrm{t})\)
\end{tabular} \\
\hline & It is convenient to extend T to work over intervals as well as time points; a fluent holds over an interval if it holds on every point within the interval: \\
\hline
\end{tabular} are initiated or terminated at the start time. We define T by saying that a fluent holds at a point in time if the fluent was initiated by an event at some time in the past and was not made false (clipped) by an intervening event. A fluent does not hold if it was terminated by an event and not made true (restored) by another event. Formally, the axioms are:
Happens \((\mathrm{e},(\mathrm{t} 1, \mathrm{t} 2)) \wedge \operatorname{Initiates}(\mathrm{e}, \mathrm{f}, \mathrm{t}) \wedge \neg \operatorname{Clipped}(\mathrm{f},(\mathrm{t}, \mathrm{t})) \wedge \mathrm{t} 1<\mathrm{t} \Rightarrow \mathrm{T}(\mathrm{f}, \mathrm{t})\)
Happens \((\mathrm{e},(\mathrm{t} 1, \mathrm{t} 2)) \wedge \operatorname{Terminates}(\mathrm{e}, \mathrm{f}, \mathrm{t} 1) \wedge \neg \operatorname{Restored}(\mathrm{f},(\mathrm{t} 1, \mathrm{t})) \wedge \mathrm{t} 1<\mathrm{t} \Rightarrow \neg \mathrm{T}(\mathrm{f}, \mathrm{t})\)
where Clipped and Restored are defined by Clipped(f, (tt, t2)) \(\Leftrightarrow \exists \mathrm{e}, \mathrm{t}, \mathrm{t} 3\)
Happens \((\mathrm{e},(\mathrm{t}, \mathrm{t} 3)) \wedge \mathrm{t} 1 \leq \mathrm{t}<\mathrm{t} 2 \wedge \operatorname{Terminates}(\mathrm{e}, \mathrm{f}, \mathrm{t})\)
Restored \(\left(\mathrm{f},\left(\mathrm{t} 1, \mathrm{t}_{2}\right)\right) \Leftrightarrow \exists \mathrm{e}, \mathrm{t}, \mathrm{t}_{3} \operatorname{Happens}\left(\mathrm{e},\left(\mathrm{t}, \mathrm{t}_{3}\right)\right) \wedge \mathrm{t}_{1} \leq \mathrm{t}<\mathrm{t}_{2} \wedge \operatorname{Initiates}(\mathrm{e}, \mathrm{f}, \mathrm{t})\)
It is convenient to extend T to work over intervals as well as time points; a fluent holds over an interval if it holds on every point within the interval:
```

