
Page 1 of 14

(2½ Hours)

[Total Marks: 60]

N. B.: (1) All questions are compulsory.

 (2) Make suitable assumptions wherever necessary and state the assumptions made.

 (3) Answers to the same question must be written together.

 (4) Numbers to the right indicate marks.

 (5) Draw neat labelled diagrams wherever necessary.

 (6) Use of Non-programmable calculators is allowed.

I Choose the correct alternative and rewrite the entire sentence with the correct

alternative. (30)

1. Which architecture is goal-oriented?

 a. Microservices b. Microprocessor

 c. IoT d. Azure

2. What makes the microservices approach special?

 a. Maintaining existing components b. Microservice System

 c. Replacement of components d. Microservice implementation

3. Microservice applications does not share which important characteristics?

 a. Independently deployable b. Autonomously developed

 c. Centralized d. Consistency

4. Two microservices characteristics that might find especially concerning

are_____________________________.

 a. decentralization and autonomy b. Centralization and autonomy

 c. Bounded by contexts and Centralized d. Bounded by contexts and autonomy

5. What means that the bulk of the work done within system will no longer be managed?

 a. Messaging enabled b. Autonomously developed

 c. Bounded by contexts d. Decentralized

6. What reduces development time?

 a. Polyglotism b. Composability

 c. Agility d. Comprehensibility

7. Eliminating costly cross-team coordination challenges is indeed a significant motivation

for ____________ .

 a. Microservice adopters b. Microservice architecture’s

 c. Transformation d. API client

Page 2 of 14

8. Currently the most widely deployed container toolset is ______________.

 a. Docker b. Orchestrator

 c. Kubernete d. GitHub

9. APIs provided by Microservices may call each other, may be called by

________________.

 a. networking b. internal

 c. public-facing d. frontend

10. Your organization’s ________ is important because it shapes all of the atomic decisions

that people within the system will make.

 a. Autonomy b. Culture

 c. System observability d. Toolmaking

11. The microservice designer should acknowledge that a _____________ of cultures occurs

whenever outsourcing is conducted

 a. pollibation b. reverse data

 c. loss of data integrity d. cross-pollination

12. Bounded context should be as big as it needs to be in order to fully express its complete

______________ language

 a. Methodologies b. Continuous Delivery

 c. MySQL d. Ubiquitous

13. Which of the following is not the feature of .NET Core?

 a. It is used for developing library

projects only.

b. NET Core is the cross-platform and

open-source implementation of .NET

 c. It can run applications on multiple

platforms.

d. It supports modern application

frameworks.

14. A Docker registry is a place to store and distribute Docker __________.

 a. Codes b. Files

 c. Application d. Images

15. ________is a cross-platform web server which is included and enabled by default in

ASP.NET Core project templates.

 a. IIS b. Kestrel

 c. Apache d. Nginx

16. Which of the Following is not an advantage of a docker?

 a. Simple configuration and interaction

with docker composed as possible.

b. Documentation provides information

in detail.

 c. Docker provides a difficult set-up

initially

d. The application lifecycle can be

described in detail in Docker

Page 3 of 14

17. Select the docker image command,to list images

 a. docker image list b. docker ls

 c. docker image ls d. docker list

18. Which of the following is not true for Microservice Ecosystems?

 a. It is a large community of

interconnected services.

b. In Microservice Ecosystems, each

service can have its own release

cadence.

 c. In Microservice Ecosystems,each

service can scale horizontally on

demand.

d. In Microservice Ecosystems, each

service cannot be deployed on its

own.

19. CRUD operations related to _____________________________

 a. Creativity, Read, Update, Delete b. Create, Read, Update, Deduce

 c. Create, Run, Update, Delete d. Create, Read, Update, Delete

20. Queries never __________ the database in CQRS.

 a. join b. modify

 c. restore d. update

21. The event processor is related to ________________

 a. Event b. Query

 c. Command d. Event Sourcing

22. API stands for ____________

 a. Application Programming Interface b. Analysis of Programming Interface

 c. Application Programming Institute d. Application Public Interface

23. In EF Core EF denotes to ____________________

 a. Entity Frame b. End Framework

 c. Entity Framework d. Empty Framework

24. Software built as _____________ can, by definition, be broken down into multiple

component services ?

 a. Monolithic b. Microservices

 c. Controller d. Model

25. What is the meaning of OAuth?

 a. Original Authorization b. Open Authorization

 c. Old Authorization d. Other Authorization

Page 4 of 14

26. Securing a microservice with no UI is called as______

 a. headless b. handfree

 c. handheld d. handon

27. Which of the following is also referred to as Short Message Service?

 a. Mini-blogs b. Micro-blogs

 c. Nano-blogs d. big-blogs

28. Which of the following about Spring Cloud is incorrect?

 a. Cloud-native based development b. Microservice-based architecture

 c. Inter-service communication d. Service integration

29. Which of the following is not the event of WebSocket API?

 a. Close b. Message

 c. Send d. Error

30. In Microservice architecture , STS stands for ______________

 a. service token security b. security token service

 c. security to service d. service to security

II Attempt any one of the following: 6

 a) In the Microservices Value Proposition, How Microservices can be used for

deriving business value?

Explanation of the features of Miceroservice such as,

Delivery speed Benifiets:

Agility, Composability, Comprehensibility, Independent deployability,

Organizational alignment, Polyglotism

IThe Safety Aligned Benifets:

Greater efficiency, Independent manageability, Replaceability, Stronger

resilience, Better runtime scalability, testability

 b) Define the concepts in regards with Microservice Design: Organization,

Culture and Embracing Change.

Organization : From a microservice system perspective, organizational design

includes the structure, direction of authority, granularity, and composition of

teams. Many of the companies that have had success with microservice

architecture point to their organizational design as a key ingredient.(Explanation

and example)

Culture: Of all the microservice system domains, culture is perhaps the most

intangible yet may also be the most important. We can broadly define culture as

a set of values, beliefs, or ideals that are shared by all of the workers within an

organization. Your organization’s culture is important because it shapes all of the

atomic decisions that people within the system will make. This large scope of

influence is what makes it such a powerful tool in your system design endeavor.

Page 5 of 14

Much like organizational design, culture is a context-sensitive feature of your

system. What works in Japan may not work in the United States and what works

in a large insurance firm may not work at an ecommerce company. So, you’ll

need to be cautious when attempting to emulate the practices that work in a

company whose culture you admire. There is no recipe or playbook that will

guarantee you the same results.

Embracing Change : Time is an essential element of a microservice system and

failing to account for it is a grave mistake. All of the decisions you make about

the organization, culture, processes, services, and solutions should be rooted in

the notion that change is inevitable.

You cannot afford to be purely deterministic in your system design; instead, you

should design adaptability into the system as a feature.

A good microservice designer understands the need for adaptability and

endeavors to continually improve the system instead of working to simply

produce a solution.

 c) Brief about goals for the Microservices Way.

In building applications in the microservices way: finding the right harmony of

speed and safety at scale is the major goal

Four Goals to Consider:

1. Reduce Cost: Will this reduce overall cost of designing, implementing, and

maintaining

IT services? The ability to reduce the cost of designing, implementing, and

deploying services allows you more flexibility when deciding whether to create

a service at all. (example)

2. Increase Release Speed: Will this increase the speed at which my team can

get from idea to deployment of services? Increasing the speed of the “from design

to deploy” cycle is another common goal. A more useful way to view this goal is

that you want to shorten the time between idea and deployment. (example)

3. Improve Resilience: Will this improve the resilience of our service network?

No matter the speed or cost of solutions, it is also important to build systems that

can “stand up” to unexpected failures. In other words, systems that don’t crash,

even when errors occur. (example)

4. Enable Visibility: Does this help me better see what is going on in my service

network? Another key goal should be to enable runtime visibility. In other words,

improve the ability of stakeholders to see and understand what is going on in the

system. There is a good set of tools for enabling visibility during the coding

process. (example)

Trade-offs : Each of these are important goals and sometimes they are competing

goals. There are trade-offs to consider. You might be able to reduce your overall

costs, but it might adversely affect runtime resilience.

Page 6 of 14

2 Attempt any one of the following: 6

 a) Brief about API Design for Microservices.

When considering microservice component boundaries, the source code itself is

only part of our concern. Microservice components only become valuable when

they can communicate with other components in the system. They each have an

interface or API. Just as we need to achieve a high level of separation,

independence, and modularity of our code we need to make sure that our APIs,

the component interfaces, are also loosely coupled. Otherwise, we won’t be able

to deploy two microservices independently, which is one of our primary goals in

order to balance speed and safety.

We see two practices in crafting APIs for microservices worth mentioning here:

• Message-oriented

• Hypermedia-driven

Messsage-Oriented

Just as we work to write component code that can be safely refactored over time,

we need to apply the same efforts to the shared interfaces between components.

The most effective way to do this is to adopt a message-oriented implementation

for microservice APIs. The notion of messaging as a way to share information

between components dates back to the initial ideas about how object-oriented

programming would work.

Hypermedia-Driven

In these instances, the messages passed between components contain more than

just data. The messages also contain descriptions of possible actions (e.g., links

and forms). Now, not just the data is loosely coupled—so are the actions. For

example, Amazon’s API Gateway and App‐ Stream APIs both support responses

in the Hypertext Application Language (HAL) format.

Hypermedia-style APIs embrace evolvability and loose coupling as the core

values of the design style. You may also know this style as APIs with Hypermedia

As The Engine Of Application State (HATEOAS APIs). Regardless of the name

used, if we are to design proper APIs in microservice architecture, it helps to get

familiar with the hypermedia style.

Hypermedia style is essentially how HTML works for the browser. HTTP

messages are sent to an IP address and a port number (usually “80” or “443”).

The messages contain the data and actions encoded in HTML format.

 b) Explain Asynchronous Message-Passing and Microservices.

Asynchronous message-passing plays a significant role in keeping things loosely

coupled in a microservice architecture. You probably noticed that in one of the

examples earlier in this chapter, we used a message broker to deliver event

notifications from our Shipment Management microservice to the Shipment

Tracking microservice in an asynchronous manner. That said, letting

microservices directly interact with message brokers (such as RabbitMQ, etc.) is

rarely a good idea. If two microservices are directly communicating via a

message-queue channel, they are sharing a data space (the channel) and we have

already talked, at length, about the evils of two microservices sharing a data

space. Instead, what we can do is encapsulate message-passing behind an

Page 7 of 14

independent microservice that can provide message-passing capability, in a

loosely coupled way, to all interested microservices.

The message-passing workflow we are most interested in, in the context of

microservice architecture, is a simple publish/subscribe workflow. How do we

express it as an HTTP API/microservice in a standard way? We recommend

basing such a workflow on an existing standard, such as PubSubHubbub. Now to

be fair, PubSubHubbub wasn’t created for APIs or hypermedia APIs, it was

created for RSS and Atom feeds in the blogging context. That said, we can adapt

it relatively well to serve a hypermedia API-enabled workflow.

 c) Explain in detail about The Need for an API Gateway.

A common pattern observed in virtually all microservice implementations is

teams securing API endpoints, provided by microservices, with an API gateway.

Modern API gateways provide an additional, critical feature required by

microservices: transformation

and orchestration. Last but not least, in most mature implementations, API

gateways cooperate with service discovery tools to route requests from the clients

of microservices.

Security

Microservice architecture is an architecture with a significantly high degree of

freedom. Or in other words, there are a lot more moving parts than in a monolithic

application. Things can go horribly wrong securitywise when there are many

moving parts. We certainly need some law and order to keep everything in control

and safe. Which is why, in virtually all microservice implementations, we see

API endpoints provided by various microservices secured using a capable API

gateway.

APIs provided by microservices may call each other, may be called by

“frontend,” i.e., public-facing APIs, or they may be directly called by API clients

such as mobile applications, web applications, and partner systems.

Transformation and Orchestration

Basically, to make microservices useful, we need an orchestration framework like

Unix piping, but one geared to web APIs.

Page 8 of 14

Microservices, due to their narrow specialization and typically small size, are

very useful deployment units for the teams producing them. That said, they may

or may not be as convenient for consumption, depending on the client. The Web

is a distributed system.

If the team is building this system using a microservice architecture, they could

end up creating two microservices for the main functionality:

1. Recommendations microservice, which takes user information in, and

responds with the list containing the recommendations—i.e., suggested

stock levels for various products that this customer typically ships.

2. Product Metadata microservice, which takes in an ID of a product type

and retrieves all kinds of useful metadata about it.

Routing

Service discovery systems such as Consul and etcd will monitor your

microservice instances and track metadata about what IPs and ports each one of

your microservices is available at, at any given time.

Monitoring and Alerting

The same tools that we mentioned for service discovery can also provide

powerful monitoring and failover capabilities. Let’s take Consul as an example.

Not only does Consul know how many active containers exist for a specific

service, marking a service broken if that number is zero, but Consul also allows

us to deploy customized health-check monitors for any service.

3 Attempt any one of the following: 6

 a) Write short note on adding Startup Class and Middleware.

Adding Startup Class

In classic ASP.NET, we had a global.asax.cs file that we could use to accomplish

work during the various startup phases of the application. With ASP.NET Core,

we can use the UseStartup<> generic method to define a startup class that handles

the new startup hooks.

The startup class is expected to be able to support the following methods:

• A constructor that takes an IHostingEnvironment variable

• The Configure method, used to configure the HTTP request pipeline and

the application

• The ConfigureServices method, used to add scoped services to the system

to be made available via dependency injection

Adding Middleware

ASP.NET Core middleware components (request processors) are set up as a chain

or pipeline and are given a chance to perform their processing in sequence during

each request. It is the responsibility of the middleware component to invoke the

next component in the sequence or terminate the pipeline if appropriate.

Middleware components can be added to request processing using the following

three methods:

Page 9 of 14

• Map

Map adds the capability to branch a request pipeline by mapping a specific

request path to a handler. You can also get even more powerful functionality with

the MapWhen method that supports predicate-based branching.

• Use

Use adds a middleware component to the pipeline. The component’s code must

decide whether to terminate or continue the pipeline.

• Run

The first middleware component added to the pipeline via Run will terminate the

pipeline. A component added via Use that doesn’t invoke the next component is

identical to Run, and will terminate the pipeline.

 b) Explain in details CoreCLR and CoreFX.

1 The Core CLR:

The CoreCLR is a lightweight, cross-platform runtime that provides many of the

same features that the Common Language Runtime (CLR) provides on the

Windows desktop or server, including:

Garbage collection: A garbage collector is responsible for the cleanup of unused

object references in a managed application. If you’ve used any of the previous

versions of .NET (or Java), then you should be familiar with the concept. Despite

the differences between the CLR and CoreCLR, they both follow the same

fundamental principles when it comes to garbage collection.

JIT compilation: As with previous versions of .NET, the Just-in-Time (JIT)

compiler is responsible for compiling the Intermediate Language (IL) code in the

.NET assemblies into native code on demand. This holds true now for Windows,

Linux, and macOS.

Exception handling: For a number of reasons beyond the scope of this book,

exception handling (e.g., try/catch statements) is a part of the runtime and not the

base class library.

2 CoreFX:

CoreFX is a set of modular assemblies (available as NuGet packages and

completely open source, available on GitHub) from which you can pick and

choose. Your application no longer needs to have every single class library

assembly installed on the target server. With CoreFX, you can use only what you

need, and in true cloud-native fashion you should vendor (bundle) those

dependencies with your application and expect nothing of your target deployment

environment. The burden of dependency management is now reversed—the

server should have nothing to do with it. Building .NET applications is no longer

about closed-source, vendor-locked development on Windows.

Page 10 of 14

 c) What are the Strategies for Sharing Models between Services?

There are a few things that are required for an environment to be considered a

microservice ecosystem. The first, obviously, is that you need more than one

service. The second is that the services within this ecosystem communicate with

each other. Without the latter, you’re just standing up an array of isolated and

unrelated services.

If we’re being diligent about following some cloud-native best practices like API

First, then all of our services will have documented, versioned, well understood

public APIs. We might be using a YAML standard like Swagger to document our

APIs, or we could be using one based on Markdown, like API Blueprint. The

mechanism of defining and documenting our APIs is not nearly as important as

the discipline we put into designing our APIs before we write our code.

With a well-defined, versioned API that we know isn’t going to break out from

underneath us, the services within our ecosystem can be built by different teams.

Consuming the API from those services then becomes merely a matter of writing

simple REST clients.

Teams frequently make some architectural decisions early on during a project

that won’t cause trouble until far into the future, when the cost of untangling the

mess can get exorbitant.

When one service changes the model in order to accommodate what should be an

internal concern, the other service is affected and potentially has builds and tests

broken as a result. They’ve lost the flexibility of true independence, and instead

of being a source of flexibility, the canonical model is now a source of tight

coupling and is preventing independent team deployment schedules.

A microservice is an embodiment of the Single Responsibility Principle (SRP)

and the Liskov Substitution Principle (LSP). A change to one service should

never have any impact on any other service. A change to the internal model

should be possible without corrupting the service’s public API or any external

models.

4 Attempt any one of the following: 6

 a) Explain the concept of Event Sourcing. How it is defined?

To help explain how Event Sourcing works, we’ll use an analogy: reality itself.

Our brains are essentially event-sourced systems. We receive stimuli in the form

of the five senses, and our brains are then responsible for properly sequencing

each stimulus (an event). Every few hundred milliseconds or so, they perform

some calculations against this never-ending stream of stimuli. The result of these

calculations is what we call reality.

Our minds process the incoming event stream and then compute state. This state

is what we perceive as our reality; the world around us. When we watch someone

dancing to music, we’re receiving audio and visual events, ensuring they’re in

Page 11 of 14

the proper order (our minds compensate for the fact that we process audio and

visual stimuli at different speeds, giving us the illusion of synchronized stimuli).

Event-sourced applications operate in a similar manner. They consume streams

of incoming events, perform functions against the inbound streams, and compute

results or state in response. This is a very different model than microliths that just

expose simple, synchronous query and store–type operations.

Event Sourcing Defined

There are a number of extremely good sources of information available on Event

Sourcing. ES is not a brand new pattern. It is, however, gaining new traction as a

viable way to deal with the types of elastic scaling and reliability that are required

by cloud services. Event Sourcing takes care of that problem, and much more, by

separating the concern of state management from the concern of receiving stimuli

that result in state changes. To make this happen, there are a number of

requirements for an event-sourced system. It must be outlined in the following

list:

Ordered : Event streams are ordered. Performing calculations against the same

set of events but in a different sequence will produce different output. For this

reason, ordering and proper time management are essential.

Idempotent: Any function that operates on an event stream must always return

the exact same result for identical ordered event streams. This rule is absolutely

mandatory, and failing to abide by it will cause untold levels of disaster.

Isolated: Any function that produces a result based on an event stream cannot

make use of external information. All data required for calculations must be

present in the events.

Past tense : Events take place in the past. This should be reflected in your variable

names, structure names, and architecture. Event processors run calculations

against a chronologically ordered sequence of events that have already happened.

 b) What is Event Processor? What procedure to follow in order to keep the

code clean and testable?

To detect team members within some range of each other is a hefty work. The

bulk of this work is done by the event processor. The event processor is the part

of the system that is as close to a pure function as we can get.

It is responsible for consuming events from the stream and taking the appropriate

actions. These actions could include emitting new events on new event streams

or pushing state changes to the reality service (discussed next).

While there are many important pieces to the event processor, the core of it is the

ability to detect nearby teammates. To perform that detection, we need to know

how to compute the distance between their GPS coordinates.

In order to keep the code clean and testable, we want to separate the

responsibilities of event processing into the following:

• Subscribing to a queue and obtaining new messages from the event

stream

Page 12 of 14

• Writing messages to the event store

• Processing the event stream (detecting proximity)

• Emitting messages to a queue as a result of stream processing

• Submitting state changes to the reality server/cache as a result of stream

processing

 c) What are Backing Services?

Whether you need binary storage for files, a database, another web service, a

queue service, or anything else, the thing you need should be loosely coupled,

and configured from the environment.

There are two ways to bind a resource that is a backing service: static binding and

dynamic (runtime) binding.

Statically bound resources

Statically bound resources are the ones we’ve been using in all of our sample

code up to this point. While we’ve been careful to allow for environment based

replacement of default values to connect to databases, web services, and queuing

services, this binding is fixed by the environment.

Whether defined by automation tools or DevOps personnel, the binding between

the service and its resource is persistent and made available to the application at

start time, and it does not change.

While this certainly satisfies the external configuration requirement for cloud-

native applications, it might not be flexible enough for your needs. Maybe you

want something a little more dynamic and powerful.

Dynamically bound resources

A dynamically bound resource is one where the binding occurs at runtime.

Moreover, this binding is not fixed and can actually change at runtime between

requests to the application.

In addition to freeing up the developers of the application from a little bit of

complexity, it also allows for even looser coupling. This dynamic, loose runtime

coupling between apps and bound resources facilitates more advanced

functionality like failover, load balancing, and fault tolerance—all with no visible

impact to the application code.

5 Attempt any one of the following: 6

 a) What are the factors required for configuring Microservice ecosystem?

Configuration in a microservice ecosystem requires attention to a number of other

factors, including:

• Securing read and write access to configuration values

• Ensuring that an audit trail of value changes is available

• Resilience and reliability of the source of configuration information

• Support for large and complex configuration information likely too

burdensome to cram into a handful of environment variables

Page 13 of 14

• Determining whether your application needs to respond to live updates or

real-time changes in configuration values, and if so, how to provision for

that

• Ability to support things like feature flags and complex hierarchies of

settings

• Possibly supporting the storage and retrieval of secure (encrypted)

information or the encryption keys themselves

Not every team has to worry about all of these things, but this is just a hint as to

the complexity of configuration management lying below the surface waiting to

strike those who underestimate this problem.

 b) How to configure Microservices with etcd?

The etcd is a lightweight, distributed key-value store. This is where you put the

most critical information required to support a distributed system. etcd is a

clustered product that uses the Raft consensus algorithm to communicate with

peers. There are more than 500 projects on GitHub that rely on etcd. One of the

most common use cases for etcd is the

storage and retrieval of configuration information and feature flags.

To get started with etcd, check out the documentation. You can install a local

version of it (it really is a small-footprint server) or you can run it from a Docker

image.

Another option is to use a cloud-hosted version. For the sample in this chapter, I

went over to compose.io and signed up for a free trial hosting of etcd (you will

have to supply a credit card, but they won’t charge you if you cancel within the

trial period).

To work with the key-value hierarchy in etcd that resembles a simple folder

structure, you’re going to need the etcdctl command-line utility. This comes for

free when you install etcd. On a Mac, you can just brew install etcd and you’ll

have access to the tool. Check the documentation for Windows and Linux

instructions.

Now that you’ve got the alias configured and you have access to a running copy

of etcd, you can issue some basic commands:

mk : Creates a key and can optionally create directories if you define a

deep path for the key.

Set : Sets a key’s value.

rm: Removes a key.

ls: Queries for a list of subkeys below the parent. In keeping with the

filesystem analogy, this works like listing the files in a directory.

update: Updates a key value.

watch: Watches a key for changes to its value.

Page 14 of 14

 c) Explain how to secure a Service with Client Credentials?

The client credentials pattern is one of the simplest ways to secure a service. First,

you communicate with the service only via SSL, and second, the code consuming

the service is responsible for transmitting credentials. These credentials are

usually just called a username and password, or, more appropriate for scenarios

that don’t involve human interaction, a client key and a client secret. Any time

you’re looking at a public API hosted in the cloud that requires you to supply a

client key and secret, you’re looking at an implementation of the client credentials

pattern.

It is also fairly common to see the client key and secret transmitted in the form of

custom HTTP headers that begin with the X- prefix; e.g., X-MyApp-ClientSecret

and X-MyApp-ClientKey.

The code to implement this kind of security is actually pretty simple, so we’ll

skip the sample here. There are, however, a number of downsides to this solution

that stem from its simplicity.

For example, what do you do if a particular client starts abusing the system? Can

you disable its access? What if a set of clients appear to be attempting a denial of

service attack? Can you block all of them? Perhaps the scariest scenario is this:

what happens if a client secret and key is compromised and the consumer gains

access to confidential information without triggering any behavioral alerts that

might get them banned?

What we need is something that combines the simplicity of portable credentials

that do not require communication with a third party for validation with some of

the more practical security features of OpenID Connect, like validation of issuers,

validation of audience (target), expiring tokens, and more.
