(2¹/₂ Hours)

[Total Marks: 60]

- N. B.: (1) <u>All</u> questions are <u>compulsory</u>.
 - (2) Make <u>suitable assumptions</u> wherever necessary and <u>state the assumptions</u> made.
 - (3) Answers to the <u>same question</u> must be <u>written together</u>.
 - (4) Numbers to the **<u>right</u>** indicate <u>marks</u>.
 - (5) Draw <u>neat labelled diagrams</u> wherever <u>necessary</u>.
 - (6) Use of **Non-programmable** calculators is **allowed**.

Ι	Choo	se the correct alternative and rewrit	te th	e entire sentence with the correct
	alternative. (30)			
1.	Digiti	zing the coordinate values of a continuou	ıs in	age is called
	a.	Compression	b.	Sampling
	c.	Segmentation	d.	Quantization
Answer	Key :	b		
2.	Whicl	n of the following is the principle energy	/ sou	rce for images?
	a.	electrical spectrum	b.	electro magnetic spectrum
	c.	electro spectrum	d.	magnetic spectrum
Answer	Key :	b		
3.	Α	process is characterized by the	e fac	t that its inputs generally are images,
	but its	s outputs are attributes extracted from the	ose ir	nages.
	a.	Low-level	b.	Last level
	c.	High level	d.	Mid level
Answer	Key :	d		
4.		are used for modeling and	l visı	alization, which are
	genera	ated by computer.		
	a.	X-rays Images	b.	Vector Images
	c.	Synthetic images	d.	Ultraviolet Images
Answer	Key :	c		
5.	<u> </u>	is process which based on Visib	le re	d light.
	a.	Vegetation discrimination	b.	Mineral mapping
	c.	Soil moisture	d.	Water penetration
Answer	Key :	a		
6.		simply yields the value of the	func	ction f (t) at the location of the
	impul	se.		
	a.	Rotation	b.	Scaling
	c.	Shifting	d.	Correlation
Answer	Key :	c		
7.	Fourie	er transform pair denoted as $f(t) \Leftrightarrow F(m)$	whe	re the double arrow indicates that the
	expres	ssion on the left is obtained by taking the		of the expression on the
	right.			1
	a.	Forward Fourier Transform	b.	Inverse Fourier Transform
	c.	Power Law Transform	d.	Convolution
Answer	Key :	b		

8.	is the property of two functions that involves flipping rotating by			
	180°c	ne function about its origin and sliding i	it pas	st the other.
	a.	Distribution	D.	Laplacian
A	C.	_ Distribution	a.	Convolution
Answer	Key :	u		a surger of discusts reduces hefers there
9.	Conti	nuous functions have to be converted in		sequence of discrete values before they
	can be	Someling and Quantization	<u>s</u>	Communication
	a.	Sampling and Quantization	D.	Compression
•	<u>с.</u> И	Interpolation	a.	Correlation
Answer	<u>Key :</u>	<u>a</u>	. 1	
10.	for th	s are instrumental in recovering the origination of the second second second second second second second second	inal 1	function from its samples, filters used
	a.	Notch filter	b.	Statistical filter
	<u>с.</u>	Homomorphic filter	d.	Reconstruction filters
Answer	Kev ·	d	u.	Reconstruction mens
11	In orf	honormal basis the have sa	me l	ength as original vector
	9	Vector subset	h	nixel representation
	<u>с</u>	coordinates representation	d d	scalar quantities
Δnswer	Kev ·		u.	seului quantities
12	What	is Heisenberg's uncertainty principle?		
12,	9	Set of points function in image where	h	Set of points function in image
	u.	time and frequency is zero	υ.	where time and frequency is
		time and nequency is zero		Uncertain
	C	Set of points function in image where	Ь	Set of points function in image
	ι.	time and frequency is Constant	u.	where time and frequency is non
		time and nequency is constant		zero
Answer	Kev :	b		
13.	discre	te Hartley transform, discrete cosine tra	nsfo	rm, and discrete sine transform. All
	three	transforms avoid the computational com	plex	ity of
	a.	Complex Numbers	b.	Real Numbers
	c.	Maximum Numbers	d.	Odd Numbers
Answer	Key :	a		
14.	Walsh	n-Hadamard transforms (WHTs) are		transformations
	a.	sinusoidal	b.	circular
	c.	non-sinusoidal	d.	centrifugal
Answer	Key :	c		
15.	What	is Walsh function ?		
	a.	basic function with 0 to 1 range of	b.	a linear combination of N X N
		pixels		Matrix basis functions
	c.	a linear combination of circular	d.	a linear combination of rectangular
		basis functions		basis functions
Answer	Key :	d		
16.	What	is use of digital image watermarking?		
	a.	copy protection	b.	image transmission
	c. i	mage compression	d.	image modification
Answer	Key :	a		

17.	To	expand the boundary of an object in binar	y ima	ages the appropriate operation is	
		Frosion	h	Dilation	
	a.	Chapting	и. Л	Closing	
A	C.		u.	Closing	
Allswer	кеу		.1	1	
18.	In r	egion growing technique1s	the s	starting pixel.	
	a.	original pixel	b.	seed pixel	
	c.	base pixel	d.	center pixel	
Answer	Key	r : b			
19.	Wh	ich of the following second order operator	r is n	nost sensitive to noise in edge	
	filte	ring?	1	1	
	a.	Sobel operator	b.	Prewitt operator	
	c.	Laplacian operator	d.	Laplacian of Gaussian operator	
Answer	Key	/:c			
20.	Wh	en we apply High pass filter in an image,	we c	an approximate	
	a.	Background	b.	Texture	
	c.	Object	d.	Boundary	
Answer	Key	/: C			
21.	On	which properties. Grav level image segme	entati	ion is based on:	
-	а.	Discontinuity and similarity	b.	continuity and similarity	
	C.	only similarity	d.	only continuity	
Answer	Kev		u	only continuity	
22	Picl	the correct example of clustering method	4		
	1 101	Level Set Methods	h	Neural Network Segmentation	
	a.	Creph Partitioning Mathada	и. Д	Watershed Transformation	
Anomon	C.		u.	watershed fransformation	
Answer	Rey				
23.	5111	litarity approach of segmentation depends	on_		
	a.	low frequencies	b.	smooth changes	
	с.	abrupt changes	d.	contrast	
Answer	Key	/:a			
24.	Wh	at is the opening operation in morphology	?		
	a.	structured filling of image region	b.	image pattern matching and marking	
		boundary pixels			
	c.	structured erosion using image pattern	d.	structured removal of image region	
		matching		boundary pixels	
Answer	Key	r : d			
25.	Poir	nts on the inside and outside of the boundation	ary a	re because there are no	
	discontinuities in intensity in those regions.				
	a.	white	b.	blank	
	c.	black	d.	one	
Answer	Kev	: c		·	
26.	Αp	oint(1,1) in the cartesian system is represe	ented	in slope-intercept space(m,c) as.	
	a.	m = -c + 1	b.	m = c + 1	
	C.	m = c - 1	d.	m = -c - 1	
Answer	Key	· · a		• •	
1 110 11 01	- x e y				

27.	Wha	What is accepting or rejecting certain frequency components in an image called as ?			
	a.	Histogram equalization	b.	contrast stretching	
	c.	filtering	d.	band pass filtering	
Answer	Key	: c			
28.	In ir	nage enhancement -reduced dataset conta	ins o	only of the pixels found	
	in th	e original scene.			
	a.	half(50%)	b.	full(100)	
	c.	one fourth (25%)	d.	one third(75%)	
Answer	Key	: c			
29.	Dig	ital image magnification is usually perform	ned	for	
	a.	enlarge or match the scale of an image	b.	reduce and match the scale of an	
				image	
	c.	reduce and match the contrast of an	d.	enlarge or match the contrast of an	
		image		image	
Answer	Key	: a			
30.	Nea	rest-neighbor, bilinear interpolation, or cu	bic o	convolution are used as	
	a.	searching algorithm	b.	resampling algorithm	
	c.	analysis algorithm	d.	plotting algorithm	
Answer	Key	: b			

Π	Attempt <u>any one</u> of the following:	6
	a Elaborate the digital image processing and its scope? Discuss basic	
	technical process.	
	Ans:	
	 An image may be defined as a two-dimensional function, f (x where x and y are spatial (plane) coordinates, and the amplitu at any pair of coordinates (x, y)is called the intensity or gray I the image at that point. When x, y, and the intensity values of all finite, discrete quantities, we call the image a digital image The field of digital image processing refers to processing dig images by means of a digital computer. a digital image is con of a finite number of elements, each of which has a particular location and value. These elements are called picture element image elements pels and pixels 	, y), ide of f level of f are e. gital nposed
	3. Pixel is the term used most widely to denote the elements of a	a digital
	 image. 4. Vision is the most advanced of our senses, so it is not surprisi images play the single most important role in human perception. However, unlike humans, who are limited to the visual band of electromagnetic (EM) spectrum, imaging machines cover alm entire EM spectrum, ranging from gamma to radio waves. 	ing that on. of the tost the

• Illumination:

The illumination may originate from a source of electromagnetic energy such as a radar, infrared, or X-ray system. But, as noted earlier, it could originate from less traditional sources, such as ultrasound or even a computer-generated illumination pattern.

• Scene:

The scene elements could be familiar objects, but they can just as easily be molecules, buried rock formations, or a human brain. Depending on the nature of the source, illumination energy is reflected from, or transmitted through, objects.

IMAGE ACQUISITION USING A SINGLE SENSING ELEMENT:

- A familiar sensor of this type is the photodiode, which is constructed of silicon materials and whose output is a voltage proportional to light intensity. Using a filter in front of a sensor improves its selectivity. For example, an optical green-transmission filter favors light in the green band of the color spectrum.
- As a consequence, the sensor output would be stronger for green light than for other visible light components. In order to generate a 2-D image using a single sensing element, there has to be relative displacements in both the x- and y-directions between the sensor and the area to be imaged.

IMAGE ACQUISITION USING SENSOR STRIPS:

- A geometry used more frequently than single sensors is an in-line sensor strip, as The strip provides imaging elements in one direction.
- Motion perpendicular to the strip provides imaging in the other direction his arrangement is used in most flat bed scanners. Sensing devices with 4000 or more in-line sensors are possible.
- In-line sensors are used routinely in airborne imaging applications, in which the imaging system is mounted on an aircraft that flies at a constant altitude and speed over the geographical area to be imaged.
- One dimensional imaging sensor strips that respond to various bands of the electromagnetic spectrum are mounted perpendicular to the direction of flight.
- An imaging strip gives one line of an image at a time, and the motion of the strip relative to the scene completes the other dimension of a 2-D image. Lenses or other focusing schemes are used to project the area to be scanned onto the sensors.

	5.	$\frac{1}{\Delta T} > 2\mu_{max}$ This equation indicates that a continuous, band-limited function can be recovered completely from a set of its samples if the samples are acquired at a rate exceedingly twice the highest frequency content of the function. This exceptionally important result is known as the sampling theorem.	
b	Expla Ans:	in the concept of Aliasing in image processing?	
	1.	The foundation of aliasing phenomena as it relates to sampling is that we	
	2.	can describe a digitized function only by the values of its samples. This means that it is possible for two (or more) totally different continuous functions to coincide at the values of their respective samples, but we would have no way of knowing the characteristics of the functions between those samples. Two completely different sine functions sampled at the same rate.	
	3.	Two continuous functions having the characteristics just described are called an aliased pair, and such pairs are indistinguishable after sampling. Note that the reason these functions are aliased is because we used a sampling rate that is too coarse. That is, the functions were under-sampled.	
	4.	It is intuitively obvious that if sampling were refined, more and more of the differences between the two continuous functions would be revealed in the sampled signals.	
	5.	Aliasing is always present in sampled signals. This is because, even if the original sampled function is band-limited, infinite frequency components are introduced the moment we limit the duration of the function. f (t), to a finite interval, say [0,T]. We can do this by multiplying f (t) by the function,	
		$h(t) = \begin{cases} 1 & 0 \le t \le T \\ 0 & \text{otherwise} \end{cases}$	

				<u> </u>
2	Δ	ttomnt	any one of the following.	6
3		Docor	the color model in brief? List and explain its type	U
	ä	Ang	the color model in other? List and explain its type.	
		1.	The purpose of a color model (also called a color space or color system) is to facilitate the specification of colors in some standard	
			way. In essence, a color model is a specification of (1) a coordinate system, and (2) a subspace within that system, such that each color in the model is represented by a single point contained in that subspace.	
		2.	Most color models in use today are oriented either toward hardware (such as for color monitors and printers) or toward applications, where color manipulation is goal (the creation of color graphics for animation is an example of the latter).	
		3.	In terms of digital image processing, the hardware-oriented models most commonly used in practice are the RGB (red, green, blue) model for color monitors and a broad class of color video cameras; the CMY (cyan, magenta, yellow) and CMYK (cyan, magenta, yellow, black) models for color printing; and the HSI (hue, saturation, intensity) model, which corresponds closely with the way humans describe and interpret color	
		4.	The HSI model also has the advantage that it decouples the color and gray-scale information in an image, making it suitable for many of the gray-scale techniques . There are numerous color models in use today.	
		5.	This is a reflection of the fact that color science is a broad field that encompasses many areas of application. It is tempting to dwell on some of these models here, simply because they are interesting and useful.	
		6.	The RGB model: In the RGB model, each color appears in its primary spectral components of red, green, and blue. This model is based on a Cartesian coordinate system. The color .subspace of interest is the cube	
		7.	The CMY And CMYK Color Models:Most devices that deposit colored pigments on paper, such as color printers and copiers, require CMY data input or perform an RGB to CMY conversion internally.This conversion is performed using the simple operation	
		8.	The HSI Color Model: When humans view a color object, we describe it by its hue, saturation, and brightness. Recall from the discussion in Section 6.1 that hue is a color attribute that describes a	

	 pure color (pure yellow, orange, or red), whereas saturation gives a measure of the degree to which a pure color is diluted by white light. brightness is a subjective descriptor that is practically impossible to measure. It embodies the achromatic notion of intensity and is one of the key factors in describing color sensation. 9. We do know that intensity (gray level) is a most useful descriptor of achromatic images. This quantity definitely is measurable and easily interpretable. The model we are about to present, called the HSI (hue, saturation, intensity) color model, decouples the intensity component from the color-carrying information (hue and saturation) in a color image. 	
b	Explain Walsh-Hadamard transforms (WHTs) in brief?	
	Ans:	
	Walsh-Hadamard transforms (WHTs) are non-sinusoidal transformations that decompose a function into a linear combination of rectangular basis functions, called Walsh functions, of value $+1$ and -1 . The ordering of the basis functions within a Walsh-Hadamard transformation matrix determines the variant of the transform that is being computed. For Hadamard ordering (also called natural ordering), the transformation matrix is obtained by substituting the inverse transformation kernal.	
	$s(x,u) = \frac{1}{\sqrt{N}} \left(-1\right)^{\sum_{i=0}^{n-1} b_i(x)b_i(u)}$	
	into Eqs.1 where the summation in the exponent of Eq.2 is performed in modulo 2 arithmetic, $N = 2n$, and $b \ z \ k()$ is the kth bit in the binary representation of z. For example, if $n = 3$ and $z = 6$ (110 in binary), $b \ z \ 0() = 0$, $b \ z \ 1() = 1$, and $b \ z \ 2() = 1$. If $N = 2$, the resulting Hadamard- ordered transformation matrix is,	
	$\mathbf{A}_{\mathbf{W}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$	
	where the matrix on the right (without the scalar multiplier) is called a Hadamard matrix of order 2. Letting H_N denote the Hadamard matrix of order N, a simple recursive relationship for generating Hadamard-ordered transformation matrices is,	
	$\mathbf{H}_{2N} = \begin{bmatrix} \mathbf{H}_N & \mathbf{H}_N \\ \mathbf{H}_N & -\mathbf{H}_N \end{bmatrix}$	

The number of sign changes along a row of a Hadamard matrix is known as the

	2.	Consider Fig. which shows an image of the Cygnus Loop supernova	
		taken in the X-ray band (see Fig. 1.7 for details about this image).	
		For purposes of the present discussion, suppose that the central light	
		region is the object of interest and that the smaller components are	
		noise	
	2	Our objective is to remove the poise Figure (b) shows the result of	
	5.	our objective is to remove the horse. Figure (b) shows the result of	
		opening the original image with a nat disk of radius 1, then closing	
		the opening with an SE of the same size. Figures (c) and (d) show	
		the results of the same operation using SEs of radii 3 and 5,	
		respectively.	
	4.	As expected, this sequence shows progressive removal of small	
		components as a function of SE size. In the last result, we see that	
		the noise has been almost eliminated. The noise components on the	
		lower right side of the image could not be removed completely	
		because their sizes are larger than the other image elements that	
		were successfully removed.	
	5.	A procedure used sometimes is to perform alternating sequential	
		filtering, in which the opening-closing sequence starts with the	
		original image but subsequent steps perform the opening and	
		closing on the results of the previous step	
	6	This type of filtering is useful in automated image analysis in which	
	0.	results at each step are compared against a specified metric	
		results at each step are compared against a specified metric.	
h	Write	a note on segmentation methods for point, line and edge detection?	
~	Ans	a note on segmentation methods for point, fine and edge detection.	
	1	segmentation methods that are based on detecting sharp local	
	1.	changes in intensity	
	\mathbf{r}	The three types of image characteristics in which we are interested	
	۷.	The three types of finage characteristics in which we are interested	
	2	are isolated points, lines, and edges.	
	3.	Edge pixels are pixels at which the intensity of an image changes	
		abruptly, and edges (or edge segments) are sets of connected edge	
		pixels.	
	4.	Edge detectors are local image processing tools designed to detect	
		edge pixels.	
	5.	A line may be viewed as a (typically) thin edge segment in which	
		the intensity of the background on either side of the line is either	
		much higher or much lower than the intensity of the line pixels.	
	6.	The lines give rise to so-called "roof edges."	
	7.	An isolated point may be viewed as a foreground (background) pixel	
		surrounded by background (foreground) pixels.	
C	Expla	in the role of noise in image thresholding?	

	Ang	
	 Ans: The simple synthetic image in Fig.is free of noise, so its histogram consists of two "spike" modes. Segmenting this image into two regions is a trivial task: we just select a threshold anywhere between the two modes. Figure shows the original image corrupted by Gaussian noise of zer mean and a standard deviation of 10 intensity levels. The modes are broader now but their separation is enough so that th depth of the valley between them is sufficient to make the modes easy to separate. A threshold placed midway between the two peaks would do the jol Figure shows the result of corrupting the image with Gaussian noise of zero mean and a standard deviation of 50 intensity levels. As the histogram in Fig. shows, the situation is much more serious now, as there is no way to differentiate between the two modes. Without additional processing (such as the methods discussed later in this section) we have little hope of finding a suitable threshold fo segmenting this image. 	0 e o.
_	Attempt any one of the following:	
3	Attempt <u>any one</u> of the following:	0
	a Describe the boundary following algorithm?	
	We assume that we are working with binary images in which object and	
	background points are labeled 1 and 0, respectively; and that images are	
	padded with a border of 0's to eliminate the possibility of an object	
	merging with the image border. For clarity, we limit the discussion	
	to single regions.	
	The approach is extended to multiple, disjoint regions by processing the	
	regions individually. The following algorithm traces the boundary of a 1 valued racion D in a	
	binary image	
	1. Let the starting point, b0, be the uppermost-leftmost point; in the	
	image that is labeled 1. Denote by c0 the west neighbor of b0 [see	

		Fig. 11.1(b)]. Clearly, c0 is always a background point. Examine the	Fig. 11.1(b)]. Clearly, c0 is always a background point. Examine	
		8-neighbors of b0, starting at c0 and proceeding in a clockwise	8-neighbors of b0, starting at c0 and proceeding in a clockwise	
		direction.	direction.	
		2. Let b1 denote the first neighbor encountered whose value is 1, and	2. Let b1 denote the first neighbor encountered whose value is 1, as	
		let c1 be the (background) point immediately preceding b1 in the	let c1 be the (background) point immediately preceding b1 in the	
		sequence. Store the locations of b0 for use in Step 5.	sequence. Store the locations of b0 for use in Step 5.	
		3. Let $b = b0$ and $c = c0$.	3. Let $b = b0$ and $c = c0$.	
		4. Let the 8-neighbors of b, starting at c and proceeding in a clockwise	4. Let the 8-neighbors of b, starting at c and proceeding in a clockw	
		direction, be denoted by n1.n2 n8. Find the first neighbor	direction, be denoted by n1.n2, n8. Find the first neighbor	
		labeled 1 and denote it by nk.	labeled 1 and denote it by nk	
		5 Let b nk = and c nk = -1.5 Repeat Steps 3 and 4 until b = b0 The	5 Let h nk = and c nk = -1.5 Repeat Steps 3 and 4 until h = b0 Th	
		sequence of b points found when the algorithm stops is the set of	sequence of h points found when the algorithm stops is the set of	
		ordered boundary points	ordered boundary points	
	h	Explain a chain code representation (Freeman chain code) in brief?	Explain a chain code representation (Freeman chain code) in brief?	_
	N	A net	Ans:	
1		A shain and componentation is based on 4 or 9 connectivity of the	\mathbf{A}	
		• A chain code representation is based on 4- or 8-connectivity of the	• A chain code representation is based on 4- or 8-connectivity of u	
		segments.	segments.	
		• The direction of each segment is coded by using a numbering	• The direction of each segment is coded by using a numbering	
		scheme. A boundary code formed as a sequence of such directional	scheme. A boundary code formed as a sequence of such direction	
		numbers is referred to as a Freeman chain code.	numbers is referred to as a Freeman chain code.	
		• Digital images usually are acquired and processed in a grid format	 Digital images usually are acquired and processed in a grid formation 	
		with equal spacing in the x- and y-directions, so a chain code could	with equal spacing in the x- and y-directions, so a chain code cou	
		be generated by following a boundary a clockwise direction and	be generated by following a boundary a clockwise direction and	
		assigning a direction to the segments connecting every pair of pixels.	assigning a direction to the segments connecting every pair of pix	
		• This level of detail generally is not used for two principal reasons:	• This level of detail generally is not used for two principal reasons	
		• The resulting chain would be quite long and	• The resulting chain would be quite long and	
		• Any small disturbances along the boundary due to noise or imperfect	• Any small disturbances along the boundary due to noise or imper	ł
		segmentation would cause changes in the code that may not be	segmentation would cause changes in the code that may not be	
		related to the principal shape features of the boundary	related to the principal shape features of the boundary	
		• An approach used to address these problems is to resample the	• An approach used to address these problems is to resample the	
		• An approach used to address these problems is to resample the	• All approach used to address these problems is to resample the	
		boundary by selecting a larger grid spacing, then as the boundary is	boundary by selecting a larger grid spacing, then as the boundary	
		traversed, a boundary point is assigned to a node of the coarser grid,	traversed, a boundary point is assigned to a node of the coarser g	
		depending on the proximity of the original boundary point to that	depending on the proximity of the original boundary point to that	
		node,	noae,	
		• The resampled boundary obtained in this way can be represented by	• The resampled boundary obtained in this way can be represented	
		a 4- or 8-code. the coarser boundary points represented by an 8-	a 4- or 8-code. the coarser boundary points represented by an 8-	
		directional chain code. It is a simple matter to convert from an 8-	directional chain code. It is a simple matter to convert from an 8-	
		code to a 4-code and vice versa	code to a 4-code and vice versa	
	C	Explain SIFT algorithm with steps?	Explain SIFT algorithm with steps?	
		Ans:	Ans:	

As the material in the preceding sections shows, SIFT is a complex	
procedure consisting of many parts and empirically determined constants.	
The following is a step by-step summary of the method.	
1. Construct the scale space. This is done using the procedure outlined	
in the parameters that need to be specified are s, s, (k is computed	
from s), and the number of octaves. Suggested values are $s = 1.6.$, $s = 2$, and three octaves.	
2. Obtain the initial keypoints. Compute the difference of Gaussians,	
D(x, y, s), from the smoothed images in scale space, as explained in	
3. Find the extrema in each $D(x, y, s)$ image using the method explained	
these are the initial keypoints.	
4. Improve the accuracy of the location of the key points. Interpolate	
the values of $D(x, y, s)$ via a Taylor expansion.	
5. The improved key point locations are given by 4. Delete unsuitable	
key points.	
6. Eliminate key points that have low contrast and/or are poorly	
localized.	
7. This is done by evaluating D from Step 3 at the improved locations,	
using all key points whose values of D are lower than a threshold are	
deleted.	
8. A suggested threshold value is 0.03. Key points associated with	
edges are deleted also, A value of 10 is suggested for r.	
9. Compute key point orientations. Use eq.to compute the magnitude	
and orientation of each key point using the histogram-based	
procedure discussed in connection with these equations.	
10.Compute key point descriptors. Use the method summarized in Fig.	
11.62 to compute a feature (descriptor) vector for each key point. If	
a region of size 16×16 around each key point is used, the result will	
be a 128-dimensional feature vector for each key point.	<u> </u>
	1